Answer:
Explanation:
The options is not well presented
This are the options
A. θ = at³ + b
B. θ = at² + bt + c
C. θ = at² — b
D. θ = Sin(at)
So, we want to prove which of the following option have a constant angular acceleration I.e. does not depend on time
Now,
Angular acceleration can be determine using.
α = d²θ / dt²
α = θ''(t)
So, second deferential of each θ(t) will give the angular acceleration
A. θ = at³ + b
dθ/dt = 3at² + 0 = 3at²
d²θ/dt² = 6at
α = d²θ/dt² = 6at
The angular acceleration here still depend on time
B. θ = at² + bt + c
dθ/dt = 2at + b + 0 = 2at + b
d²θ/dt² = 2a + 0 = 2a
α = d²θ/dt² = 2a
Then, the angular acceleration here is constant is "a" is a constant and the angular acceleration is independent on time.
C. θ = at² —b
dθ/dt = 2at — 0 = 2at
d²θ/dt² = 2a
α = d²θ/dt² = 2a
Same as above in B. The angular acceleration here is constant is "a" is a constant and the angular acceleration is independent on time.
D. θ = Sin(at)
dθ/dt = aCos(at)
d²θ/dt² = —a²Sin(at) = —a²θ
α = d²θ/dt² = -a²θ
Since θ is not a constant, then, the angular acceleration is dependent on time and angular displacement
So,
The answer is B and C
Hello!
Use the <u>second law of Newton:</u>
F = ma
Replacing:
F = 40 kg * 30 m/s^2
Resolving:
F = 1200 N
The force is <u>1200 Newtons.</u>
Answer:
27.336
Explanation:
The atomic mass is the weighted average of the atomic masses of the isotopes. Simply multiply each isotopes's atomic mass by its relative abundance, then sum the results.
m = 0.8233 × 26.975 + 0.1767 × 29.018
m = 27.336
<h2><em>
The Answer to Youre Question:</em></h2>
<em>I think it is B.</em>
<em>I hope this helps.</em>