Answer:
true
Explanation:
Because Mercury can be solidified when its temparature us brought to its freezing point. However, when returned to room temparature conditions, mercury does not exist in solid state for long, and returns back to its more common liquid form.
A. The gravitational force of the sun increased.
The gravitational pull increases as the mass increases
Answer:
Kinetic energy decreases as temperature decreases.
Explanation:
From the description that the system at 80°C has longer arrows, or move faster than the system at 20°C, having shorter actors indicating a slower motion, we can conclude that the kinetic energy of a body depends on its temperature.
If the system at 80°C shows a greater kinetic energy (faster motion of particles) than the system at 20°C, it then implies that decreasing the temperature of the body decreases its kinetic energy.
Answer: 193 mg of theobromine are present in the sample.
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number of particles.
To calculate the moles, we use the equation:

1 mole of theobromine
weigh = 180 g
of theobromine
weigh =
(1g=1000mg)
193 mg of theobromine are present in the sample.
thermal conduction and convection processes we explain the temperature profile: warmer at the bottom and colder at the top
Temperature is a measure of the internal energy of molecules.
When the pot is on the burner, the lower part of the pot acquires energy from the flame, this energy increases the temperature of the metal that is in contact with the liquid from the bottom, by a process of thermal conduction, while the liquid in the top is kept at the same temperature.
As time progresses, the hotter lower liquid, for which it has a lower with the metal bottom heats up by conduction. density, conscientiously rise and a transfer of heat is created by convection, which raises the temperature of the hot liquid and makes the liquid fall that is colder from the upper part than at the coming into contact
This cycle is repeated heating all the liquid. But the liquid with the liquid in the lower part always at a higher temperature than the liquid in the upper part, the process stops when the liquid in the lower part reaches the boiling point, than the passage from liquid to gas, during which the temperature remains constant.
With the thermal conduction and convection processes we explain the temperature profile: warmer at the bottom and colder at the top.
Learn more about temperature transfer here: brainly.com/question/24200572