Answer:
202 L
Explanation:
Step 1: Write the balanced equation
C₆H₁₂O₆ + 6 O₂(g) ⇒ 6 CO₂(g) + 6 H₂O(l)
Step 2: Calculate the moles corresponding to 270 g of C₆H₁₂O₆
The molar mass of C₆H₁₂O₆ is 180.16 g/mol.
270 g × 1 mol/180.16 g = 1.50 mol
Step 3: Calculate the moles of CO₂ generated from 1.50 moles of glucose
The molar ratio of C₆H₁₂O₆ to CO₂ is 1:6. The moles of CO₂ formed are 6/1 × 1.50 mol = 9.00 mol
Step 4: Calculate the volume of 9.00 moles of CO₂ at STP
The volume of 1 mole of an ideal gas at STP is 22.4 L.
9.00 mol × 22.4 L/mol = 202 L
Answer:
Neutrons released during a fission reaction cause other nuclei to split
Explanation:
A nuclear fission reaction is defined as the reaction in which a heavy nucleus splits into small nuclei along with release of energy.
The given reaction is 
Now, we balance the mass on both reactant and product side as follows.
235 + 1 =
236 = 234 + x
x = 236 -234
= 2
So, now we balance the charge on both reactant and product side as follows.
92 + 0 = 
92 = 96 - y
y = 4
Thus, we can conclude that there are 2 neutrons and 4 beta-particles are produced in the given reaction.
Therefore, reaction equation will be as follows.

Due to prescence of any impurity, there will be change in physical properties of any liquid.