The best answer would be A.) stay in the car.
-do not have windows open, and do not touch the outside of the car.
Answer:
1. (S,O) < (Se,S) < (C,H) = (H,I) = (H,F) < (Si,Cl) < (K,Br)
Explanation:
The covalent character always increases down the group, this is because ionic character decreases down the group and also electronegativity.
In the same way, Covalent character always decreases across a period because electronegativity increases across a period.
The higher the electronegativity values between the two atoms, the more ionic it will be.
Answer:
6
Explanation:
This atom is sulfur (if the electrons are equal to the protons/not an ion). You can tell the number of valence electrons by looking at the individual shell. The first shell (1s) can only hold 2 electrons. The second shell (2s and 2p) can hold 8 electrons. The third shell (3s and 3p), which is the valence shell, only has 6 out of its possible 8 electrons, so this atom has 6 valence electrons.
nuclear power--used to turn turbines...
fossil fuels--burned to provide energy that is....
renewable energy--energy that with come back after use
outlet--a device....
steam--nuclear reactors....
I'm not sure but I tried lol,lemme know if I'm wrong :D
According to the law of conservation of mass, what is the same on both sides of a balanced chemical equation?
A. the volume of the substances
B. the subscripts
C. the total mass of atoms
D. the coefficients
Answer:
A balanced equation demonstrates the conservation of mass by having the same number of each type of atom on both sides of the arrow.
Explanation:
Every chemical equation adheres to the law of conservation of mass, which states that matter cannot be created or destroyed. ... Use coefficients of products and reactants to balance the number of atoms of an element on both sides of a chemical equation.
Consider the balanced equation for the combustion of methane.
CH
4
+
2O
2
→
CO
2
+
2H
2
O
All balanced chemical equations must have the same number of each type of atom on both sides of the arrow.
In this equation, we have 1
C
atom, 4
H
atoms, and 4
O
atoms on each side of the arrow.
The number of atoms does not change, so the total mass of all the atoms is the same before and after the reaction. Mass is conserved.
Here is a video that discusses the importance of balancing a chemical equation.