Answer:
b) 3.10
Explanation:
HF ⇄ H
+ + F
Using Henderson-Hasselbalch Equation:
pH = pKa + log [A-]/[HA].
Where;
pKa = Dissociation constant = -log Ka
Hence, pKa of HF = -log 7.2 x 10^-4 = 3.14266
[A-] = concentration of conjugate base after dissociation = moles of base/total volume
= 0.15 x 0.3/0.8
= 0.05625 M
[HA] = concentration of the acid = moles of acid/total volume
= 0.10 x 0.5/0.8
= 0.0625 M
Note: <em>Total volume = 500 + 300 = 800 mL = 0.8 dm3</em>
pH = 3.14266 + log [0.05625/0.0625]
= 3.14267 + (-0.04575749056)
= 3.09691250944
<em>From all the available options below:</em>
<em>a) 2.97
</em>
<em>b) 3.10
</em>
<em>c) 3.19
</em>
<em>d) 3.22
</em>
<em>e) 3.32</em>
The correct option is b.
According to avogadro constant, the number of units in one mole of any substance contain 6.022 x10 ^23 atoms
therefore the number of o atoms in one mole of CuSO4 = 6.022 x 10 ^ 23
Answer:
light energy to convert carbon dioxide and water into glucose and oxygen gas. Each molecule of glucose essentially “stores” up to 38 molecules of ATP which can be broken down and used during other cellular reactions.
Explanation:
The gas molecules move between the system and the surroundings follow PV=nRT.
<h3>What are molecules?</h3>
The smallest particle of a substance has all of the physical and chemical properties of that substance.
An increase in pressure pushes the molecules closer together, reducing the volume. If the pressure is decreased, the gases are free to move about in a larger volume.
In the kinetic theory of gasses, increasing the temperature of a gas increases in average kinetic energy of the molecules, causing increased motion.
The reduction in the volume of the gas means that the molecules are striking the walls more often increasing the pressure, and conversely if the volume increases the distance the molecules must travel to strike the walls increases and they hit the walls less often thus decreasing the pressure.
At constant temperature and pressure the volume of a gas is directly proportional to the number of moles of gas. At constant temperature and volume the pressure of a gas is directly proportional to the number of moles of gas.
Learn more about molecules here:
brainly.com/question/14130817
#SPJ1
The atomic mass of element is the weighted average atomic mass of the element with respect to the abundance of the isotopes of that element
atomic mass is the sum of the products of the mass of isotopes by their percentage abundance
atomic mass = 15.000 amu x 5.000 % + 16.000 amu x 95.000 %
= 0.7500 + 15.200
atomic mass of element is therefore 15.950