a hypothesis is an idea or explanation that you then test through study and experimentation
Answer: Processes that change rocks from one type to another.
Explanation: During the rock cycle, different rock types change from one to another. For example, sedimentary rock changes to metamorphic rock through heat and pressure.
<span>We have ground strate configurations of electrons,if electrons are filled in order of increasing energy. When there are electrons are in higher orbitals, we have an atom in an excited state.
B, and C are excited states.
In B, 2 electrons can fit in the 4s orbital, and that should fill fully before the 4p orbitals.
In C, the same is true for 5s and 5p
In D, this is not an excited state because 4s fills before 3d</span>
Answer:
C. 2.000 M C6H12O6
Explanation:
Let us obtain the molarity of the solution.
Molar Mass of C6H12O6 = (12x6) + (12x1) + (16x6) = 72 + 12 + 96 = 180g/mol
Mass of C6H12O6 = 180g
Number of mole = Mass /Molar Mass
Number of mole of C6H12O6 = 180/180 = 1mole
Volume = 500mL = 500/1000 = 0.5L
Molarity = mole /Volume
Molarity = 1/0.5
Molarity = 2M
So the solution will be best labelled as 2M C6H12O6
Answer:
The reaction of FeBr3/Br2 with benzaldehyde will yield a major product in which the -Br is attached to the benzaldehyde at the meta position.
Explanation:
In chemistry, resonance is a way of describing bonding in certain molecules or ions by the combination of several contributing structures into a resonance hybrid in valence bond theory. Resonance structures often explain the formation of certain major and minor products in organic chemistry reactions.
Aromatic aldehydes and ketones undergo electrophilic substitution reactions such as nitration, sulphonation and halogenation. Since the aldehydic group (-CHO) and ketonic group (-COR or -COAr) are electron-withdrawing, they are deactivating and m-directing.
In benzaldehyde, the ring becomes deactivated at ortho & para positions due to an electron withdrawing aldehyde group. Hence electrophilic substitution is favored at Meta position.
This implies that the reaction of FeBr3/Br2 with benzaldehyde will yield a major product in which the -Br is attached to the benzaldehyde at the meta position.