1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fudgin [204]
3 years ago
7

A 2 kg ball travellng to the right with a speed of 4 m/s collidees with a 5 kg ball traveling to the left with a speed of 3 m/s.

Take right to be the positive direction. What is the total momentum of the two balls before they collide? What is the total momentum of the two balls after they collide?
Physics
1 answer:
Savatey [412]3 years ago
5 0

Explanation:

Momentum before collision:

(2 kg) (4 m/s) + (5 kg) (-3 m/s) = -3 kg m/s

No external forces act on the balls, so momentum is conserved.  Therefore, momentum after collision is also -3 kg m/s.

You might be interested in
A horizontal spring with spring constant 750 N/m is attached to a wall. An athlete presses against the free end of the spring, c
ANTONII [103]

Answer:

37.5 N Hard

Explanation:

Hook's law: The force applied to an elastic material is directly proportional to the extension provided the elastic limit of the material is not exceeded.

Using the expression for hook's law,

F = ke.............. Equation 1

F = Force of the athlete, k = force constant of the spring, e = extension/compression of the spring.

Given: k = 750 N/m, e = 5.0 cm = 0.05 m

Substitute into equation 1

F = 750(0.05)

F = 37.5 N

Hence the athlete is pushing 37.5 N hard

4 0
3 years ago
Read 2 more answers
I need help with my physics homework agh! Please help it's due tomorrow. <br>​
storchak [24]

Rubbing both pieces cause each piece to have a negative charge.

When two parts have the same they repel each other, so holding one piece up tot he end of the other piece would push it away.

Because one piece is held in the middle by a string, it would rotate the piece in a circle.

If they held the piece to the other end of the one held by a string it would start to rotate in the opposite direction.

4 0
3 years ago
A 0.150 kg stone rests on a frictionless, horizontal surface. A bullet of mass 9.50 g, traveling horizontally at 380 m/s, strike
Anvisha [2.4K]

Answer:

(a)Magnitude=28.81 m/s

Direction=33.3 degree below the horizontal

(b) No, it is not perfectly elastic collision

Explanation:

We are given that

Mass of stone, M=0.150 kg

Mass of bullet, m=9.50 g=9.50\times 10^{3} kg

Initial speed of bullet, u=380 m/s

Initial speed of stone, U=0

Final speed of bullet, v=250m/s

a. We have to find the magnitude and direction of the velocity of the stone after it is struck.

Using conservation of momentum

mu+ MU=mv+ MV

Substitute the values

9.5\times 10^{-3}\times 380 i+0.150(0)=9.5\times 10^{-3} (250)j+0.150V

3.61i=2.375j+0.150V

3.61 i-2.375j=0.150V

V=\frac{1}{0.150}(3.61 i-2.375j)

V=24.07i-15.83j

Magnitude of velocity of stone

=\sqrt{(24.07)^2+(-15.83)^2}

|V|=28.81 m/s

Hence, the magnitude and direction of the velocity of the stone after it is struck, |V|=28.81 m/s

Direction

\theta=tan^{-1}(\frac{y}{x})

=tan^{-1}(\frac{-15.83}{24.07})

\theta=tan^{-1}(-0.657)

=33.3 degree below the horizontal

(b)

Initial kinetic energy

K_i=\frac{1}{2}mu^2+0=\frac{1}{2}(9.5\times 10^{-3})(380)^2

K_i=685.9 J

Final kinetic energy

K_f=\frac{1}{2}mv^2+\frac{1}{2}MV^2

=\frac{1}{2}(9.5\times 10^{-3})(250)^2+\frac{1}{2}(0.150)(28.81)^2

K_f=359.12 J

Initial kinetic energy is not equal to final kinetic energy. Hence, the collision is not perfectly elastic collision.

5 0
3 years ago
A pool ball moving 1.83 m/s strikes an identical ball at rest. Afterward, the first ball moves 1.15 m/s at a 23.3° angle. What i
Oksi-84 [34.3K]

Answer:

v_{1fy} = - 0.4549 m / s

Explanation:

6 0
3 years ago
A photon detector captures a photon with an energy of 4.29 ✕ 10−19 J. What is the wavelength, in nanometers, of the photon?
serious [3.7K]

Answer :  The wavelength of photon is, 4.63\times 10^{2}nm

Explanation : Given,

Energy of photon = 4.29\times 10^{-19}J

Formula used :

E=h\times \nu

As, \nu=\frac{c}{\lambda}

So, E=h\times \frac{c}{\lambda}

where,

\nu = frequency of photon

h = Planck's constant = 6.626\times 10^{-34}Js

\lambda = wavelength of photon  = ?

c = speed of light = 3\times 10^8m/s

Now put all the given values in the above formula, we get:

4.29\times 10^{-19}J=(6.626\times 10^{-34}Js)\times \frac{(3\times 10^{8}m/s)}{\lambda}

\lambda=4.63\times 10^{-7}m=4.63\times 10^{-7}\times 10^9nm=4.63\times 10^{2}nm

Conversion used : 1nm=10^{-9}m

Therefore, the wavelength of photon is, 4.63\times 10^{2}nm

6 0
3 years ago
Other questions:
  • The mass of Planet X is one-tenth that of the earth, and its diameter is one-half that of the earth. the acceleration due to gra
    12·1 answer
  • What do scientist use to look at astronomical bodies?
    7·2 answers
  • Why do skydivers use parachutes ???
    11·2 answers
  • A dumbbell-shaped object is composed by two equal masses, m, connected by a rod of negligible mass and length r. If I_1 is the m
    9·1 answer
  • Why must indirect evidence be used to study the structure of atoms?
    12·1 answer
  • When hydrogen is heated or subjected to an electric discharge, it emits light with specific visible wavelengths. A diffraction g
    6·1 answer
  • 2) [25 pts] The bob of mass m=5 kg shown in the figure is being held by a force F. If the angle is 0⃗
    8·1 answer
  • A force of 100 N is used to move a chair 2 m. How much work is done<br>​
    5·1 answer
  • An elevator of 3 × 10^4N is raised to a height of 100m in 20s . The work done by electric motor is equivalent to ?​
    15·1 answer
  • - A ball is thrown at a wall 50 meters away. It takes the ball 5 seconds to get to
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!