Answer:
Due to the resistance of air, a drag force acts on a falling body (parachute) to slow down its motion. Without air resistance, or drag, objects would continue to increase speed until they hit the ground. The larger the object, the greater its air resistance. Parachutes use a large canopy to increase air resistance. Also, Once the parachute is opened, the air resistance overwhelms the downward force of gravity. The net force and the acceleration on the falling skydiver is upward. An upward net force on a downward falling object would cause that object to slow down. The skydiver thus slows down. Sorry if not helpful.
Answer:
True
Explanation:
Measurements of how orbital speeds depend on distance from the center of our galaxy tell us that stars in the outskirts of the galaxy. True or False
stars in the outskirt orbit the galactic center
the object mean orbital speed depends only on the Earth's mass and the semi-major axis (half the longest diameter) of the object's orbit. worthy of note. the orbital speed changes depending on where in the orbit the object is. It will be greatest when closest to Earth and least when furthest from Earth.
Because the effective charge of the nucleus increase from left to eight due to the increasing number of protons.
The greater charge pulls the electrons closer to the nucleus, decreasing the radius.
D. Only B and C
Medium and High levels can be harmful. But low even levels aren't good either.