Answer:
The answer will be <em>D</em>
Explanation:
I choose answer <em>C</em> and got it wrong on the test. Also Liquid atoms vibrate fast and slide past each other. what answer <em>C </em>shows is a gas.
Correct question:
Consider the motion of a 4.00-kg particle that moves with potential energy given by

a) Suppose the particle is moving with a speed of 3.00 m/s when it is located at x = 1.00 m. What is the speed of the object when it is located at x = 5.00 m?
b) What is the magnitude of the force on the 4.00-kg particle when it is located at x = 5.00 m?
Answer:
a) 3.33 m/s
b) 0.016 N
Explanation:
a) given:
V = 3.00 m/s
x1 = 1.00 m
x = 5.00

At x = 1.00 m

= 4J
Kinetic energy = (1/2)mv²

= 18J
Total energy will be =
4J + 18J = 22J
At x = 5

= -0.24J
Kinetic energy =

= 2Vf²
Total energy =
2Vf² - 0.024
Using conservation of energy,
Initial total energy = final total energy
22 = 2Vf² - 0.24
Vf² = (22+0.24) / 2

= 3.33 m/s
b) magnitude of force when x = 5.0m



At x = 5.0 m


= 0.016N
Answer:

Explanation:
given,
traffic light weight = 100 N
angle at which the rope is supported = 30°
vertical component of force = ?







Let us say that Cp is the specific heat of the metal object.
Then we do a heat balance (heat lost by metal = heat gained by water):
- 19g * Cp * (22degC – 96degC) = 75g * 4.184J/g degC * (22degC
– 18degC)
<span>Cp = 0.893 J/g degC</span>