I'm going to assume that this gripping drama takes place on planet Earth, where the acceleration of gravity is 9.8 m/s². The solutions would be completely different if the same scenario were to play out in other places.
A ball is thrown upward with a speed of 40 m/s. Gravity decreases its upward speed (increases its downward speed) by 9.8 m/s every second.
So, the ball reaches its highest point after (40 m/s)/(9.8 m/s²) = <em>4.08 seconds</em>. At that point, it runs out of upward gas, and begins falling.
Just like so many other aspects of life, the downward fall is an exact "mirror image" of the upward trip. After another 4.08 seconds, the ball has returned to the height of the hand which flung it. In total, the ball is in the air for <em>8.16 seconds</em> up and down.
Answer:
-
Explanation:
We are given that
Mass of cars= m=1900 kg
Initial speed of car=u=20 m/s
Final speed of car=v=0
Time=
=1.3 s
We have to find the average force exerted on the car.
Average force=



Hence, the average force exerted on the car that hits a line of water barrels=-
The wave frequency is 2 Hz.
What is wave frequency ?
The number of waves that pass through a fixed point in a given amount of time is referred to as the wave frequency. The hertz is the SI unit for wave frequency (Hz).

where,

Given,


The waves frequency is 2 Hz.
To know more about wave frequency,check out:
brainly.com/question/15830195
#SPJ4
That seems like a statement more than a question. Where's the question?
The answer is ; 6cm
Hope this helps!
Please give Brainliest!
This is because of the diagram below: