Answer:
a) t = 4.16 s
b) x = 141.51 m
Explanation:
Given
v = 21.5 m/s
x0 = 52.0 m
a = 6.0 m/s²
a) Motorcycle
x = v0*t + (a*t²/2)
x = 21.5t + (6*t²/2)
x = 21.5t + 3t² <em>(I)</em>
Car
x = x0 + v0*t
x = 52 + 21.5t <em>(II)</em>
<em />
then we can apply <em>I = II</em>
21.5t + 3t² = 52 + 21.5t
⇒ 3t² = 52
⇒ t = 4.16 s
b) We can use <em>I</em> or <em>II</em>, then
x = 52 + 21.5*(4.16)
⇒ x = 141.51 m
Answer:
t should be 3.57 second
Explanation:
Formula used is v = u+at
In which v is final velocity, u is initial velocity, a is acceleration and t is time.
Substitute each of the info given into the formula and calculate.
49 = 24 + (7)t
t = 3.57s
Answer:
first number is 113 and the second number is 15
Answer:
Vector quantities are important in the study of motion. Some examples of vector quantities include force, velocity, acceleration, displacement, and momentum. The difference between a scalar and vector is that a vector quantity has a direction and a magnitude, while a scalar has only a magnitude. Vector, in physics, a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. A quantity which does not depend on direction is called a scalar quantity. Vector quantities have two characteristics, a magnitude and a direction. The resulting motion of the aircraft in terms of displacement, velocity, and acceleration are also vector quantities. A vector quantity is different to a scalar quantity because a quantity that has magnitude but no particular direction is described as scalar. A quantity that has magnitude and acts in a particular direction is described as vector.
Explanation:
The headlamp's concave mirror is open on one end, and the light bulb's filament is placed at or near the focus. (Sorry if this is Wrong)