By using drift velocity of the electron, the current flow is 7.20 ampere.
We need to know about drift velocity of electrons to solve this problem. The drift velocity can be determined as
v = I / (n . A . q)
where v is drift velocity, I is current, n is atom number density, A is surface area and q is the charge.
From the question above, we know that
d = 2.097 mm
r = (0.002097 / 2) m
v = 1.54 mm/s = 0.00154 m/s
ρ = 8.92 x 10³ kg/m³
q = e = 1.6 x 10¯¹⁹C
Find the atom density
n = Na x ρ / Mr
where Na is Avogadro's number (6.022 x 10²³), Mr is the atomic weight of copper (63.5 g/mol = 0.635 kg/mol).
n = 6.022 x 10²³ x 8.92 x 10³ / 0.635
n = 8.46 x 10²⁷ /m³
Find the current flows
v = I / (n . A . q)
0.00154 = I / (8.46 x 10²⁷ . πr² . 1.6 x 10¯¹⁹)
0.00154 = I / (8.46 x 10²⁷ . π(0.002097 / 2)² . 1.6 x 10¯¹⁹)
I = 7.20 ampere
For more on drift velocity at: brainly.com/question/25700682
#SPJ4
Answer:
Explanation:
A )
At the bottom of the circle , the potential energy of the stopper is converted into kinetic energy
1/2 m V² = mg x 2r + 1/2 mv²
m is mass of stopper , V is velocity at the bottom , r is radius of the circular path which is length of the string , v is velocity at the top
1/2 V² = g x 2r + 1/2 v²
V² = g x 4r + v²
V² = 9.8 x 4 + 8²
V² = 103.2
V = 10.16 m/s
B )
If T be the tension at the top
Net downward force
= mg + T . This force provides centripetal force for the circular motion
mg +T = mv² / r
T = mv²/r -mg
= m ( v²/r - g )
= .005 ( 8²/1 -g )
= .005 x 54.2
= .27 N .
C ) At the bottom
Net force = T - mg , T is tension at the bottom , V is velocity at bottom
T-mg = mV²/r
T = m ( V²/r +g )
= .005 ( 10.16²/1 +9.8)
= .005 x 113
= .56 N .
Answer:
I don't know sorry hopefully I can help with something else tho

With the given values of
, we have

Try dealing with the powers of 10 first: On the right, we have

Meanwhile, the other values on the right reduce to

Then taking units into account, we end up with the equation

Now we solve for
:


or, if taking significant digits into account,

Answer:
The separation of visible light into its different colors is known as dispersion. It was mentioned in the Light and Color unit that each color is characteristic of a distinct wave frequency; and different frequencies of light waves will bend varying amounts upon passage through a prism
Explanation: