1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irina1246 [14]
3 years ago
13

A 1.0 m string with a 5 g stopper on the end is whirled in a vertical circle. The speed of the stopper is 8 m/s at the top of th

e circle. (A) What is the speed of the stopper at the bottom of the circle? (HINT: Use energy conservation principles!) (10.2 m/s) (B) What is the tension in the string when the stopper is at the top of the circle? (0.27 N) (C) What is the tension in the string when the stopper is at the bottom of the circle?
Physics
1 answer:
Andrew [12]3 years ago
3 0

Answer:

Explanation:

A )

At the bottom of the circle , the potential energy of the stopper is converted into kinetic energy

1/2 m V² = mg x 2r + 1/2 mv²

m is mass of stopper , V is velocity at the bottom , r is radius of the circular path which is length of the string , v is velocity at the top

1/2  V² = g x 2r + 1/2 v²

 V² = g x 4r +  v²

 V² = 9.8 x 4 +  8²

V² = 103.2

V = 10.16 m/s

B )

If T be the tension at the top

Net downward force

= mg + T . This force provides centripetal force for the circular motion

mg +T = mv² / r

T =   mv²/r -mg

= m ( v²/r - g )

= .005 ( 8²/1 -g )

= .005 x 54.2

= .27 N .

C ) At the bottom

Net force = T  - mg , T is tension at the bottom , V is velocity at bottom

T-mg = mV²/r

T = m ( V²/r +g )

= .005 ( 10.16²/1 +9.8)

= .005 x 113

= .56 N .

You might be interested in
EXPERTS/ACE and people that wanna help 4 sure only!
mario62 [17]
That first one you have selected (3,-3) works in both equations so it's correct.
good job.

you can do this guess and test method with multiple choice answers. If it works in both equations it is the solution. Otherwise use substitution or elimination to combine the two into one equation in only one variable. Then you can solve for the one variable first and use it to solve for the other.

3 0
3 years ago
A person carries a plank of wood 1.6 m long with one hand pushing down on it at one end with a force F1 and the other hand holdi
Elis [28]

Answer: 115.52\ N

Explanation:

Given

Length of plank is 1.6 m

Force F_1 is applied on the left side of plank

Force F_2 is applied 43 cm from the left end O.

Mass of the plank is m=13.7\ kg

for equilibrium

Net torque must be zero. Taking torque about left side of the plank

\Rightarrow mg\times 0.8-F_2\times 0.43=0\\\\\Rightarrow F_2=\dfrac{13.7\times 9.8\times 0.8}{0.43}\\\\\Rightarrow F_2=249.78\ N

Net vertical force must be zero on the plank

\Rightarrow F_1+W-F_2=0\\\Rightarrow F_1=F_2-W\\\Rightarrow F_1=249.78-13.7\times 9.8\\\Rightarrow F_1=115.52\ N

8 0
2 years ago
When a driver presses the brake pedal, his car can stop with an acceleration of -5.4m/s^2. How far will the car travel while com
Dahasolnce [82]
Information that is given:
a = -5.4m/s^2
v0 = 25 m/s
---------------------
S = ?
Calculate the S(distance car traveled) with the formula for velocity of decelerated motion:
v^2 = v0^2 - 2aS
The velocity at the end of the motion equals zero (0) because the car stops, so v=0.
0 = v0^2 - 2aS
v0^2 = 2aS
S = v0^2/2a
S = (25 m/s)^2/(2×5.4 m/s^2)
S = (25 m/s)^2/(10.8 m/s^2)
S = (625 m^2/s^2)/(10.8 m/s^2)
S = 57.87 m
3 0
3 years ago
Frequency is measured in units called?
irina1246 [14]
The frequency, f, of a wave is the number of waves passing a point in a certain time. We normally use a time of one second, so this gives frequency the unit hertz (Hz), since one hertz is equal to one wave per second.
5 0
3 years ago
An electric field of magnitude 2.35 V/m is oriented at an angle of 25.0° with respect to the positive z-direction. Determine the
zzz [600]

Answer:

The magnitude of the electric flux is 3.53\ N-m^2/C

Explanation:

Given that,

Electric field = 2.35 V/m

Angle = 25.0°

Area A= 1.65 m^2

We need to calculate the flux

Using formula of the magnetic flux

\phi=E\cdot A

\phi = EA\cos\theta

Where,

A = area

E = electric field

Put the value into the formula

\phi=2.35\times1.65\times\cos 25^{\circ}

\phi=2.35\times1.65\times0.91

\phi=3.53\ N-m^2/C

Hence, The magnitude of the electric flux is 3.53\ N-m^2/C

8 0
3 years ago
Other questions:
  • You have created a circuit in science class. You are using a 9 volt battery. You have generated what type of current?
    14·2 answers
  • A 72.9 kg man stands on a spring scale in an elevator. Starting from rest, the elevator ascends, attaining its maximum speed of
    10·1 answer
  • Object A has mass mA = 9 kg and initial momentum vector pA,i = < 20, -6, 0 > kg · m/s, just before it strikes object B, wh
    13·1 answer
  • How are carbon tetrachloride and sodium chloride different from each other?
    6·2 answers
  • You are in a train traveling on a horizontal track and notice that a piece of luggage starts to slide directly toward the front
    7·1 answer
  • Three forces are applied to a solid cylinder of mass 12 kg (see the drawing). The magnitudes of the forces are F1 = 15 N, F2 = 2
    5·1 answer
  • Two cello strings, with the same tension and length, are played simultaneously. Their fundamental frequencies produce audible be
    6·1 answer
  • Homeostasis refers to the ability of the body to maintain a stable internal environment despite changes in external conditions.
    11·2 answers
  • Please write ONE complete sentence describing the relationship between Kinetic Energy and Gravitational Potential Energy in a sy
    13·1 answer
  • What has a higher eccentricity - a planet or a comet?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!