Answer:If the object's speed increases.
Explanation:
If the object's speed increases, then its kinetic energy will increase. If the kinetic energy increases, the change in kinetic energy will be positive.
Answer:
4
Explanation:
For gases :
1. The motion of gases molecule is in random manner at the room temperature.
2.The distance between the gas molecule is more and that is why gas can be compress.
3.The attraction force between the gas molecule is negligible or we can say that there is no any force between the gas molecules.that is why gas can be filled in the container.But the motion of the gas molecule does not stop they are still moving inside the container but the space for movement become less.When a gas container heated then the container start to vibrate because the movement of the gas molecule.
So the option 4 is incorrect.
The wavelength of the light beam required to turn back all the ejected electrons is 497 nm which is option (b).
- Work function is a material property defined as the minimum amount of energy required to infinitely remove electrons from the surface of a particular solid.
- The potential difference required to support all emitted electrons is called the stopping potential which is given by
.....(1) - where
is the stopping potential and e is the charge of the electron given by
.
It is given that work function (Ф) of monochromatic light is 2.50 eV.
Einstein photoelectric equation is given by:
....(2)
where K.E(max) is the maximum kinetic energy.
Substituting (1) into (2) , we get

As we know that
....(3)
where Speed of light,
and Planck's constant , 
From equation (3) , we get

Learn about more einstein photoelectric equation here:
brainly.com/question/11683155
#SPJ4
<h3>
Answer: True</h3>
For example, a very dense metal will sink to the bottom while something like wood will float on the surface. The wood is less dense compared to the water, which is why it floats. Density is the measure of how much stuff you can pack in a certain volume. The higher the density, the more stuff per volume. Think of it like packing a suitcase. If there's barely anything in there, then we can say its density is low. The more stuff crammed in the suitcase will increase the density (and therefore the weight), while keeping the volume the same.
Explanation:
We have,
Semimajor axis is 
It is required to find the orbital period of a dwarf planet. Let T is time period. The relation between the time period and the semi major axis is given by Kepler's third law. Its mathematical form is given by :

G is universal gravitational constant
M is solar mass
Plugging all the values,

Since,

So, the orbital period of a dwarf planet is 138.52 years.