.ANSWER:Copper is a ductile metal
EXPLAIN :This means that it can easily be shaped into pipes and drawn into wires. Copper pipes are lightweight because they can have thin walls. They don't corrode and they can be bent to fit around corners.
We determine the percent by mass of water in the compound by dividing the mass of water by the total mass. The total mass of Na2SO4.10H2O is equal to 322 g. The mass of water is 180 g.
percent by mass of water = (180 / 322)*(100 %) = 55.9%
Answer:
The standard enthalpy of formation of this isomer of
is -220.1 kJ/mol.
Explanation:
The given chemical reaction is as follows.


The expression for the entropy change for the reaction is as follows.
![\Delta H^{o}_{rxn}=[8\Delta H^{o}_{f}(CO_{2}) +9\Delta H^{o}_{f}(H_{2}O)]-[\Delta H^{o}_{f}(C_{8}H_{18})+ \frac{25}{2}\Delta H^{o}_{f}(O_{2})]](https://tex.z-dn.net/?f=%5CDelta%20H%5E%7Bo%7D_%7Brxn%7D%3D%5B8%5CDelta%20H%5E%7Bo%7D_%7Bf%7D%28CO_%7B2%7D%29%20%2B9%5CDelta%20H%5E%7Bo%7D_%7Bf%7D%28H_%7B2%7DO%29%5D-%5B%5CDelta%20H%5E%7Bo%7D_%7Bf%7D%28C_%7B8%7DH_%7B18%7D%29%2B%20%5Cfrac%7B25%7D%7B2%7D%5CDelta%20H%5E%7Bo%7D_%7Bf%7D%28O_%7B2%7D%29%5D)



Substitute the all values in the entropy change expression.
![-5104.1kJ/mol=[8(-393.5)+9(-241.8)kJ/mol]-[\Delta H^{o}_{f}(C_{8}H_{18})+ \frac{25}{2}(0)kJ/mol]](https://tex.z-dn.net/?f=-5104.1kJ%2Fmol%3D%5B8%28-393.5%29%2B9%28-241.8%29kJ%2Fmol%5D-%5B%5CDelta%20H%5E%7Bo%7D_%7Bf%7D%28C_%7B8%7DH_%7B18%7D%29%2B%20%5Cfrac%7B25%7D%7B2%7D%280%29kJ%2Fmol%5D)



Therefore, The standard enthalpy of formation of this isomer of
is -220.1 kJ/mol.
Answer:
C = 18.29 g
Explanation:
Given data:
Mass of beryllium needed = ?
Mass of nitrogen = 18.9 g
Solution:
Chemical equation:
3Be + N₂ → Be₃N₂
now we will calculate the number of moles of nitrogen:
Number of moles = mass/molar mass
Number of moles = 18.9 g/ 28 g/mol
Number of moles = 0.675 mol
Now we will compare the moles of nitrogen and Be from balance chemical equation.
N₂ : Be
1 : 3
0.675 : 3/1×0.675 = 2.03 mol
Number of moles of Be needed are 2.03 mol.
Mass of Beryllium:
Mass = number of moles × molar mass
Mass = 2.03 mol × 9.01 g/mol
Mass = 18.29 g