A 1.50-m string of weight 0.0125 N is tied to the ceiling at its upper end, and the lower end supports a weight W. Ignore the ve
ry small variation in tension along the length of the string that is produced by the weight of the string. When you pluck the string slightly, the waves traveling up the string obey the equation: y(x,t) = (8.50 mm)cos(172 rad/m x − 4830 rad/s t)Assume that the tension of the string is constant and equal to W. (a) How much time does it take a pulse to travel the fulllength of the string? (b) What is the weight W? (c) How many wavelengths are on the string at any instant of time? (d) What is the equation for waves traveling down the string?
All you need is golfing equipment make a small hole in the ground and have like something to cover the sun off of you and boom you got a golfing spot and a golf club no skills needed. Oh and you need a small flag for your gold hole but then your good and you can have fun