1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alina [70]
3 years ago
7

A 1.50-m string of weight 0.0125 N is tied to the ceiling at its upper end, and the lower end supports a weight W. Ignore the ve

ry small variation in tension along the length of the string that is produced by the weight of the string. When you pluck the string slightly, the waves traveling up the string obey the equation: y(x,t) = (8.50 mm)cos(172 rad/m x − 4830 rad/s t)Assume that the tension of the string is constant and equal to W. (a) How much time does it take a pulse to travel the fulllength of the string? (b) What is the weight W? (c) How many wavelengths are on the string at any instant of time? (d) What is the equation for waves traveling down the string?
Physics
1 answer:
Natalka [10]3 years ago
5 0

Answer:

Explanation:

mass of string = .0125 / 9.8

= 1.275 x 10⁻³ kg

Length of string l = 1.5 m .

m = mass per unit length

= ( .1.275 / 1.5) x 10⁻³ kg/m

m = .85 x 10⁻³ kg/m

wave equation: y(x,t) = (8.50 mm)cos(172 rad/m x − 4830 rad/s t)

compare with equation of wave

y(x,t) = Acos(K x − ω t)

ω ( angular velocity ) = 4830 rad/s

k = 172 rad/m

Velocity = ω / k

= 4830/172 m /s

= 28.08 m /s

velocity of wave = \sqrt{\frac{W}{m } }

28.08 = \sqrt{\frac{W}{.85\times10^{-3} } }

788.48 =  W / .85 X 10⁻³

W = 670 x  10⁻³ N .

c ) wave length

wave length =2π  / k

= 2 x 3.14 / 172

= .0365 m

no of wave lengths over whole length of string

= 1.5 / .0365

= 41

d )

equation for waves traveling down the string

= (8.50 mm)cos(172 rad/m x + 4830 rad/s t)

You might be interested in
A blue train of mass 50 kg moves at 4 m/s toward a green train of 30 kg initially at rest. The trains collide. After the collisi
ra1l [238]

Explanation:

Momentum = mass × speed

p = (30 kg) (3 m/s)

p = 90 kg m/s

7 0
3 years ago
How much force is required to pull a spring 3.0 cm from
avanturin [10]

Answer:

I know that T= kx where T is the tension which equaka the force og gravity = mg = 1.37 * 10 = 13.7 x is the elongation of the spring so the length after dangling the object minus the original length.

I hope it helps

plz let me know if it is wrong or right.

4 0
3 years ago
If a racecar traveling at 6 m/s accelerates at 0.75 m/s over 30 seconds, what is its
Elina [12.6K]

Answer:

The importance of learning is that it helps the individual to acquire the necessary skills through learning and knowledge so that he can achieve his set goals. An important fact about learning is that it is a means to improve knowledge and gain skills that will help in reaching specific goals.

Explanation:

The importance of learning is that it helps the individual to acquire the necessary skills through learning and knowledge so that he can achieve his set goals. An important fact about learning is that it is a means to improve knowledge and gain skills that will help in reaching specific goals.

8 0
3 years ago
Which type of interference occurs when two waves exactly cancel out? NEED AN ANSWER ASAP
Nostrana [21]
If the two waves combine to produce ANY wave that smaller
than either of the originals, that's destructive interference.
4 0
3 years ago
Two buses are driving along parallel freeways that are 5mi apart, one heading east and the other heading west. Assuming that eac
Oksanka [162]

Answer:

101.54m/h

Explanation:

Given that the buses are 5mi apart, and that they are both driving at the same speed of 55m/h, rate of change of distance can be determined using differentiation as;

Let l be the be the distance further away at which they will meet from the current points;

l=\sqrt{13^2-5^2}=12m\\\\\frac{dl}{dt}=-(55m/h+55m/h})\\\\=-110m/h#The speed toward each other.

\frac{dh}{dt}=0, \ \ \ \ h=constant\\\\h^2+l^2=b^2\\\\2h\frac{dh}{dt}+2l\frac{dl}{dt}=2b\frac{db}{dt}\\\\2\times5\times0+2\times12\times(-110)=2\times13\frac{db}{dt}\\\\\frac{db}{dt}=-101.54m/h

Hence, the rate at which the distance between the buses is changing when they are 13mi apart is 101.54m/h

4 0
3 years ago
Other questions:
  • What are the effects of noise?​
    15·1 answer
  • Find the kinetic energy of a 0.1 kg toy truck moving at a speed of 1.1 m/s
    14·1 answer
  • List out the methods that you can use to separate solid-solid mixtures
    13·1 answer
  • All electromagnetic waves travel in vacuum at the speed of c=3×10^8 m/s. Find the wavelength of microwaves of frequency 10^10 Hz
    5·1 answer
  • 2.486 L is equal to:
    10·2 answers
  • Two spherical objects are separated by a distance that is 9.00 X 10m The objects are initially electrically neutral and are very
    8·1 answer
  • 3. What are the challenges of looking for Dyson spheres?
    9·2 answers
  • An object travels a distance d with acceleration a over a period of time t according to the equation: d = at² After 2.3 seconds
    8·1 answer
  • Ist Law: a object continues in a state of
    15·1 answer
  • What is the magnitude of the resultant of a 7.0-N force acting vertically upward and a 5.0-N force acting horizontally.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!