Answer:
=99.07nm
Explanation:
minimum thickness
2nd = (m - 1/2)λ
d = (m - 1/2)(λ/2n)
refractive index of the thin film, n = 1.34
minimum thickness m = 1
light wavelength λ = 531nm
d = (1 - 1/2) (531 / (2)(1.34)
d = 531/5.36
= 99.07nm
Answer:
hub9hybygbgybgybgygybsbgydgbydxbgbyxdgbyxdyggdxygbyxdgybzgbydbgyzsbgydgbyzdgxbybgydzs
Explanation:
Answer:
Explanation:
a )
Reaction force of the ground
R = mg
= 160 N
Maximum friction force possible
= μ x R
= μ x 160
= .4 x 160
= 64 N .
b )
160 N will act at middle point . 740N will act at distance of 3 / 5 m from the wall ,
Taking moment about top point of ladder
160 x 1.5 + 740 x 3/5 + f x 4 = 900 x 3
240 + 444 + 4f = 2700
f = 504 N
c )
Let x be the required distance.
Taking moment about top point of ladder
160 x 1.5 + 740 x 3 x / 5 + .4 x 900 x 4 = 900 x 3 ( .4 x 900 is the maximum friction possible )
240 + 444 x + 1440 = 2700
x = 2.3 m
so man can go upto 2.3 at which maximum friction acts .
Answer:
The last graph.
Explanation:
Gravitational potential energy is the energy possessed by a body at a given height from the Earth's surface.
The formula to find the gravitational potential energy is given as:

Where, 'U' is the gravitational potential energy.
'm' is the mass of the body.
'g' is the acceleration of the body due to gravity.
'h' is the height of the body above the Earth's surface.
So, from the above equation, it is clear that, gravitational potential energy is directly proportional to the height. So, as height increases, the gravitational potential energy increases. At the surface of Earth, where, height is 0, the gravitational potential energy is also zero.
Therefore, the correct graph is a straight line with positive slope and passing through the origin. So, the last option is the correct one.
A) it is always changing direction