-- pick a planet from the table
-- take it's mass and radius from the table, and plug them into the big ugly formula above the table
-- do the arithmetic with your pencil or your calculator. The answer is the acceleration of gravity on the planet you picked. Write it down so you don't lose it.
-- do the same for the other 3 planets in the table
4200 N is the tension in the cable that pulls the elevator upwards.
The correct option is A.
<h3>What does tension ?</h3>
Tension is the force that is sent through a rope, thread, or wire whenever two opposing forces pull on it. Along the whole length of the wire, the tensile stress pulls equally on all objects at the ends. Every physical object that comes into contact with that other one exerts force on it.
<h3>Briefing:</h3>
We employ the following formula to determine the cable's tension.
Formula:
T = mg+ma............ Equation 1
Where:
T is the cable's tension.
M = Mass of the elevator and the Joey
Accelerating with a
g = Gravitational acceleration
Considering the query,
Given:
m = (300+60) = 360 kg
a = 2 m/s²
g = 9.8 m/s²
Substitute these values into equation 2
T = (360×9.8)+(360×2)
T = 3528+720
T = 4248 N
T ≈ 4200 to the nearest hundred.
To know more about Tension visit:
brainly.com/question/14177858
#SPJ1
Answer:
Explanation:
We know that the pressure can be calculated in the following way:
p = d·g·h
with d being the density of the water, g the gravitational acceleration and h the depth.
Also d of the water = 1000 kg/m^3 circa and g = 9.8 m/s^2 circa
117,500 Pa = 1000kg/m³ · 9.8m/s² · h
Therefore h = 11,9 m
The answer is no. If you are dealing with a conservative force and the object begins and ends at the same potential then the work is zero, regardless of the distance travelled. This can be shown using the work-energy theorem which states that the work done by a force is equal to the change in kinetic energy of the object.
W=KEf−KEi
An example of this would be a mass moving on a frictionless curved track under the force of gravity.
The work done by the force of gravity in moving the objects in both case A and B is the same (=0, since the object begins and ends with zero velocity) but the object travels a much greater distance in case B, even though the force is constant in both cases.