Explanation:
The acceleration g varies by about 1/2 of 1 percent with position on Earth's surface, from about 9.78 metres per second per second at the Equator to approximately 9.83 metres per second per second at the poles.
Burning fossil fuels emits a number of air pollutants that are harmful to both the environment and public health. Sulfur dioxide (SO2) emissions, primarily the result of burning coal, contribute to acid rain and the formation of harmful particulate matter.
Answer:
C. 
Explanation:
Let initial charges on both spheres be,

When the sphere C is touched by A, the final charges on both will be,
#Now, when C is touched by B, the final charges on both of them will be:

Now the force between A and B is calculated as:

Hence the electrostatic force becomes 3F/8
Answer:
Energy required = 3169.34 Joules.
Explanation:
The quantity of energy (Q) required can be determined by;
Q = mcΔθ
Where: m is the mass, c is the specific heat and Δθ is the change in temperature.
But, m = 96.7 kg, c = 0.874 J/(kg
),
=
and
=
.
So that,
Q = mc(
-
)
= 96.7 x 0.874 x (
-
)
= 96.7 x 0.874 x 37.5
= 3169.3425
Q = 3169.34
= 3.2 KJ
The amount of energy required is 3169.34 Joules.
Answer:
distance = 21.56 m
Explanation:
given data
mass = 50 kg
initial velocity = 18.2 m/s
force = -200 N ( here force applied to opposite direction )
final velocity = 12.6 m/s
solution
we know here acceleration will be as
acceleration a = force ÷ mass
a =
= -4 m/s²
we get here now required time that is
required time =
...............1
put here value
required time =
so distance will be
distance =
........2
distance =
distance = 21.56 m