The impulse shared by the object equals the difference in momentum of the object. In equation form,
F • t = m • Δ v. In a collision, objects experience an impulse; the impulse causes and is equal to the difference in momentum.
<h3>How to calculate thrust provided by the rocket engines is 10 kN (10 000 N).?</h3>
a)There is this impulse-momentum change equation.

We consider everything exits happen along a straight line, and gravitation does not participate.
So, the increase of momentum is F×t = 10000 N × 60 seconds = 600000 N*s = 600000 (kg*m)*s/s^2 = 600000 kg*m/s.

New velocity after engine was firing during 60 seconds is 2000 + 500 = 2500 m/s.
To learn more about Impulse-momentum, refer
brainly.com/question/20586658
#SPJ9
From the definition of average velocity,
,
and the fact that constant acceleration means

we can solve for the time
:

Answer:
Explanation:
Let fuel is released at the rate of dm / dt where m is mass of the fuel
thrust created on rocket
= d ( mv ) / dt
= v dm / dt
this is equal to force created on the rocket
= 220 dv / dt
so applying newton's law
v dm / dt = 220 dv / dt
v dm = 220 dv
dv / v = dm / 220
integrating on both sides
∫ dv / v = ∫ dm / 220
lnv = ( m₂ - m₁ ) / 220
ln4000 - ln 2500 = ( m₂ - m₁ ) / 220
( m₂ - m₁ ) = 220 x ( ln4000 - ln 2500 )
( m₂ - m₁ ) = 220 x ( 8.29 - 7.82 )
= 103.4 kg .
Johannes Kepler- he did it by observing the ‘Tycho Brahe’. His 3rd law was published 10 years later to his first two laws.
The outer planets have a high gravity due to their large size