Pounds
If you are talking about the unit of measurement for weight is that of force it would be Newtons.
Answer:
p_k=\sqrt{p_x^2+p_y^2}}
Explanation:
Apply the momentum in each direction knowing that the impact is at the same time for the pieces so




So the momentum in the other piece can be find knowing that

So:



To find the velocity knowing the mass



Mechanical energy E = mgh + 1/2mv²
When he starts, let h = 0 ⇒ E₁ = 1/2mv₁²
When he reaches height h ⇒ E₂ = mgh + 1/2mv₂²
Without friction, energy is conserved at all times.
E₁ = E₂
↓
1/2mv₁² = mgh + 1/2mv₂²
↓
1/2v₁² = gh + 1/2v₂²
↓
gh = 1/2(v₁² - v₂²)
↓
h = (v₁² - v₂²) / (2g)
Answer: y(t)= 1/π^2 sin(6*π^2*t)
Explanation: In order to solve this problem we have to consider the general expression for a harmonic movement given by:
y(t)= A*sin (ω*t +φo) where ω is the angular frequency. A is the amplitude.
The data are: ν= 3π; y(t=0)=0 and y'(0)=6.
Firstly we know that 2πν=ω then ω=6*π^2
Then, we have y(0)=0=A*sin (6*π^2*0+φo)= A sin (φo)=0 then φo=0
Besides y'(t)=6*π^2*A*cos (6*π^2*t)
y'(0)=6=6*π^2*A*cos (6*π^2*0)
6=6*π^2*A then A= 1/π^2
Finally the equation is:
y(t)= 1/π^2 sin(6*π^2*t)
12kN is equal to 12000 N
and the perpendicular component will be
[email protected] mg = 12000 N
cos10°= 0.984
thus it will be 12000*0.984 = 11808N
the frictional force will be
[email protected]sin10° = 0.1736
and hence it will be = 2083N