Answer:
A. electrons simultaneously attracted by more than one nucleus
Explanation:
- Covalent bond is the bond which is formed with the sharing of the electrons between the two atoms which are taking part in the bond. It is generally formed between the atoms with similar electronegativity values.
- It is the bond which is generally occurs within non metals as they share electrons to complete their octet.
- The difference in the electronegativity values of the atoms involving in a covalent bond must not exceed the value of 1.7 .
Thus, the electrons are attracted by the two different nucleus of the atoms that are taking part in the bonding.
<u>So, the correct answer is:- A. electrons simultaneously attracted by more than one nucleus</u>
To determine the number of moles of a gas, we need to have an expression that relates the pressure, temperature and volume of the system. For simplification, we assume that this gas is ideal so we use the equation PV=nRT. We calculate as follows:
PV=nRT
n = PV / RT
n = 235000(1.48x10^-4) / (8.314)(40+273.15)
n = 0.01336 mol
<u>Answer:</u> The equilibrium constant for this reaction is 
<u>Explanation:</u>
The equation used to calculate standard Gibbs free change is of a reaction is:
![\Delta G^o_{rxn}=\sum [n\times \Delta G^o_{(product)}]-\sum [n\times \Delta G^o_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G%5Eo_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G%5Eo_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the standard Gibbs free change of the above reaction is:
![\Delta G^o_{rxn}=[(1\times \Delta G^o_{(Ni(CO)_4(g))})]-[(1\times \Delta G^o_{(Ni(s))})+(4\times \Delta G^o_{(CO(g))})]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20G%5Eo_%7B%28Ni%28CO%29_4%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20G%5Eo_%7B%28Ni%28s%29%29%7D%29%2B%284%5Ctimes%20%5CDelta%20G%5Eo_%7B%28CO%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta G^o_{rxn}=[(1\times (-587.4))]-[(1\times (0))+(4\times (-137.3))]\\\\\Delta G^o_{rxn}=-38.2kJ/mol](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-587.4%29%29%5D-%5B%281%5Ctimes%20%280%29%29%2B%284%5Ctimes%20%28-137.3%29%29%5D%5C%5C%5C%5C%5CDelta%20G%5Eo_%7Brxn%7D%3D-38.2kJ%2Fmol)
To calculate the equilibrium constant (at 58°C) for given value of Gibbs free energy, we use the relation:

where,
= Standard Gibbs free energy = -38.2 kJ/mol = -38200 J/mol (Conversion factor: 1 kJ = 1000 J )
R = Gas constant = 8.314 J/K mol
T = temperature = ![58^oC=[273+58]K=331K](https://tex.z-dn.net/?f=58%5EoC%3D%5B273%2B58%5DK%3D331K)
= equilibrium constant at 58°C = ?
Putting values in above equation, we get:

Hence, the equilibrium constant for this reaction is 
To find the amount of moles in a molecule you divide the grams of the substance by the molar mass.
molar mass of CO2 = 44.01 g
22g / 44.01 = 0.50 moles CO2
The sideways and downward movement of the edge of a plate of the earths crust into the mantle beneath another plate