<u>Answer:</u> The net ionic equation for the given reaction is 
<u>Explanation:</u>
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are the ions which do not get involved in a chemical equation. It is also defined as the ions that are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of hydrochloric acid and potassium sulfite is given as:

Ionic form of the above equation follows:

As, potassium and chloride ions are present on both the sides of the reaction, thus, it will not be present in the net ionic equation.
The net ionic equation for the above reaction follows:

Hence, the net ionic equation for the given reaction is written above.
Answer:
Aluminum metal
Explanation:
In order to properly answer this or a similar question, we need to know some basic rules about galvanic cells and standard reduction potentials.
First of all, your strategy would be to find a trusted source or the table of standard reduction potentials. You would then need to find the half-equations for aluminum and gold reduction:


Since we have a galvanic cell, the overall reaction is spontaneous. A spontaneous reaction indicates that the overall cell potential should be positive.
Since one half-equation should be an oxidation reaction (oxidation is loss of electrons) and one should be a reduction reaction (reduction is gain of electrons), one of these should be reversed.
Thinking simply, if the overall cell potential would be obtained by adding the two potentials, in order to acquite a positive number in the sum of potentials, we may only reverse the half-equation of aluminum (this would change the sign of E to positive):
Notice that the overall cell potential upon summing is:

Meaning we obey the law of galvanic cells.
Since oxidation is loss of electrons, notice that the loss of electrons takes place in the half-equation of aluminum: solid aluminum electrode loses 3 electrons to become aluminum cation.
<span><span>There is no formula. The speed of light is a fundamental constant which appears in other formulas but there’s no formula to compute the numerical value.Well, actually, that’s not quite right. The numerical value in meters per second is known exactly, because we use the speed of light to define the meter. It is: <span><span><span>c=299,792,458 m/s</span><span>c=299,792,458 m/s</span></span>
</span>. Exactly. But the thing is — this value is purely an artifact of our unit system. Other unit systems will give other values, so the number value is entirely arbitrary.</span></span>
Answer:
Ethanol most easily forms hydrogen bonds.
Explanation:
The difference among the alcohols in this question is the size of carbonic chain and the position of the -OH group.
Ethanol has 2 carbons and the -OH group is terminal. The other alcohols have more carbons and the -OH group is not terminal. This means that the approximation of molecules will be facilitated for ethanol, and the interaction through hydrogen bons will be easier. However, for the other molecules, there will be steric hindrance, which will make it more difficult for the molecules to make hydrogen bonds.
The figure attached shows the alcohol structures.
Answer:
43.75 ml
Explanation:
Given that the equation of the reaction is;
2HNO3(aq) + Ca(OH)2(aq) ---> Ca(NO3)2(aq) + 2 H20(l)
Concentration of acid CA= 0.05 M
Concentration of base CB = 0.02 M
Volume of acid VA = 35.00ml
Volume of base VB= ???
Number of moles of acid NA= 2
Number of moles of base NB=1
From
CAVA/CBVB= NA/NB
Making VB the subject of the formula;
VB= CAVANB/CBNA
VB= 0.05 × 35 × 1/ 0.02 × 2
VB=1.75 /0.04
VB= 43.75 ml