Answer:
The molarity of the solution is 0,31 M
Explanation:
We calculate the weight of 1 mol of NaCl from the atomic weights of each element of the periodic table. Then, we calculate the molarity, which is a concentration measure that indicates the moles of solute (in this case NaCl) in 1000ml of solution (1 liter)
Weight 1 mol NaCl= Weight Na + Weight Cl= 23 g + 35, 5 g= 58, 5 g
58, 5 g-----1 mol NaCl
13,1 g ---------x= (13,1 g x 1 mol NaCl)/58, 5 g= 0, 224 mol NaCl
727 ml solution------ 0, 224 mol NaCl
1000ml solution------x= (1000ml solutionx0, 224 mol NaCl)/727 ml solution
x=0,308 mol NaCl---> <em>The solution is 0,31 molar (0,31 M)</em>
Isotopes are variants of a particular chemical element which differ in neutron number, and consequently in nucleon number. All isotopes of a given element have the same number of protons but different numbers of neutrons in each atom.
The term isotope is formed from the Greek roots isos ("equal") and topos ("place"), meaning "the same place".
Answer:
Rate of forward reaction will increase.
Explanation:
Effect of change in reaction condition on equilibrium is explained by Le Chatelier's principle. According to this principle,
If an equilibrium condition of a dynamic reversible reaction is disturbed by changing concentration, temperature, pressure, volume, etc, then reaction will move will in a direction which counteract the change.
In the given reaction,
A + B ⇌ C + D
If concentration of A is increase, then reaction will move in a direction which decreases the concentration of A to reestablish the equilibrium.
As concentration A decreases in forward direction, therefore, rate of forward reaction will increase.
Answer:
A
Explanation:
molarity=moles of solute/liter of solution
molarity=0.26/0.3
molarity=0.87molar