Answer:
The final temperature of water is 54.5 °C.
Explanation:
Given data:
Energy transferred = 65 Kj
Mass of water = 450 g
Initial temperature = T1 = 20 °C
Final temperature= T2 = ?
Solution:
First of all we will convert the heat in Kj to joule.
1 Kj = 1000 j
65× 1000 = 65000 j
specific heat of water is 4.186 J /g. °C
Formula:
q = m × c × ΔT
ΔT = T2 - T1
Now we will put the values in Formula.
65000 j = 450 g × 4.186 J /g. °C × (T2 - 20°C )
65000 j = 1883.7 j /°C × (T2 - 20°C )
65000 j/ 1883.7 j /°C = T2 - 20°C
34.51 °C = T2 - 20°C
34.51 °C + 20 °C = T2
T2 = 54.5 °C
Answer : The number of grams of calcium perchlorate is, 0.00253 grams.
Explanation :
Molar mass of calcium perchlorate = 238.9 g/mol
As,
formula units present in 238.9 g of calcium perchlorate
So,
formula units present in
of calcium perchlorate
Therefore, the number of grams of calcium perchlorate is, 0.00253 grams.
Pseudoscience means any various methods, theories, or systems
Answer:

Explanation:
Hello!
In this case, when balancing chemical reactions, we must make sure that the atoms of each element are the same at both reactants and products; thus, for the given reaction, we need two iron and aluminum atoms at each side based on their subscripts in the given oxides as shown below:

Best regards!
Remember that:
number of moles = mass/molar mass
First, we get the molar mass of the nitrogen gas molecule:
It is known the the nitrogen gas is composed of two nitrogen atoms, each with molar mass 14 gm (from the periodic table)
Therefore, molar mass of nitrogen gas = 14 x 2 = 28 gm
Second we calculate the mass of the precipitate:
we have number of moles = 0.03 moles (given)
and molar mass = 28 gm (calculated)
Using the equation mentioned before,
mass = number of moles x molar mass = 0.03 x 28 = 0.84 gm