Answer:
C = 0.22857 ng / m³
Explanation:
Let's solve this problem for part the total time in the kitchen is
t = 2h (60 min / 1h) = 120 min
The concentration (C) quantity of benzol pyrene is the initial quantity plus the quantity generated per area minus the quantity eliminated by the air flow. The amount removed can be calculated assuming that an amount of extra air that must be filled with the pollutant
amount generated
C = co + time_generation rate / (area_house + area_flow)
C = 0.2 + 0.01 120 / (40+ 2)
C = 0.22857 ng / m³
Answer:
START
READ ID_Number
READ Item_description
READ length_of_auction_Days
READ minimum_required_bid
IF minimum_required_bid GREATER THAN 100
THEN
DISPLAY
Item Details are
Item Id : ID_Number
Item Description: Item_description
Length Action days: length_of_auction_Days
Minimum Required Bid: minimum_required_bid
END
Explanation:
Answer:
W = 112 lb
Explanation:
Given:
- δb = 0.025 in
- E = 29000 ksi (A-36)
- Area A_de = 0.002 in^2
Find:
Compute Weight W attached at C
Solution:
- Use proportion to determine δd:
δd/5 = δb/3
δd = (5/3) * 0.025
δd = 0.0417 in
- Compute εde i.e strain in DE:
εde = δd / Lde
εde = 0.0417 / 3*12
εde = 0.00116
- Compute stress in DE, σde:
σde = E*εde
σde = 29000*0.00116
σde = 33.56 ksi
- Compute the Force F_de:
F_de = σde *A_de
F_de = 33.56*0.002
F_de = 0.0672 kips
- Equilibrium conditions apply:
(M)_a = 0
3*W - 5*F_de = 0
W = (5/3)*F_de
W = (5/3)* 0.0672 = 112 lb
Answer:
the pressure at the end of the combustion is 2.68 MPa
Solution:
As per the question:
Initial Pressure, P = 0.95\ MPa
Temperature before combustion,
= 273 + 425 = 698 K
Temperature after combustion,
= 1973 K
Now,
To calculate the pressure at the end of combustion, P':
By using the Pressure-Temperature relation from Gay- Lussac's law:


