Answer:
The London dispersion force is the weakest intermolecular force. The London dispersion force is a temporary attractive force that results when the electrons in two adjacent atoms occupy positions that make the atoms form temporary dipoles.
The unit 'mW' means milliwatts. It is a unit of work. There are 1,000 milliwatts in a 1 Watt of work. In 4 hours, there are 14,400 seconds.
Work= Energy/time
17 mW * 1 W/1000 mW = Energy/(14,400 seconds)
Solving for energy,
Energy = 244.8 J
Energy/photon = 244.8 J/(6.04×10²⁰) = 4.053×10⁻¹⁹ J/photon
Using the Planck's equation:
E = hc/λ
where h = 6.626×10⁻³⁴ m²·kg/s, c = 3,00,000,000 m/s and λ is the wavelength
4.053×10⁻¹⁹ J/photon = (6.626×10⁻³⁴ m²·kg/s)(3,00,000,000 m/s)/λ
λ = 4.9×10⁻⁷ m or 49 micrometers
A covalent bond is your answer
Any substance that accept a proton by definition is considered to be BRONSTED LOWRY BASE.
Bronsted Lowry defined acid and base on the basis of donating or accepting protons. In the Bronsted Lowry classification of acid and base, an acid is defined as a substance which donate proton while a base is defined as a substance which accept proton.