Answer:
Kc for this reaction is 0.43
Explanation:
This is the equilibrium:
N₂(g) + 2H₂O(g) → 2NO(g) +2H₂(g)
And we have all the concentration at equilibrium:
N₂: 0.25M
H₂ : 1.3M
NO: 0.33M
H₂: 1.2M
They are ok, because they are in MOLARITY. (mol/L)
Let's make the expression for Kc
Kc = ( [NO]² . [H₂]² ) / ([N₂] . [H₂O]²)
Kc = (0.33² . 1.2²) / (0.25 . 1.2²)
Kc = 0.4356
In two significant digits. 0.43
Answer:
See explanation and image attached
Explanation:
My aim is to convert 1-bromobutane to butanal. The first step is to react the 1-bromobutane substrate with water. This reaction occurs by SN2 mechanism to yield 1-butanol. Hence reagent A is water.
1-butanol is now reacted with an oxidizing agent such as acidified K2Cr2O7 (reagent B) to yield butanal. Note that primary alkanols are oxidized to alkanals.
These sequence of reactions are shown in the image attached.
Answer:
325
Explanation:
velocity = 3250 Hz x 0.1 m
Answer:
The amount of sodium is 32 mg per cracker, 49 mg per pretzel and 68 mg per cookie.
Explanation:
Let's assume amount of sodium is x mg per cracker, y mg per pretzel and z mg per cookie.
So, the following three equations can be written as per given information:
x+y+z = 149 ........(1)
8y+8z = 936 ........(2)
6x+7y = 535 .........(3)
From equation- (2), y+z =
= 117
By substituting the value of (y+z) in equation- (1) we get,
x = 149-(y+z) = 149-117 = 32
By substituting the value of x into equation- (3) we get,
y =
= 49
By substituting the value of y into equation- (2) we get,
z = (117-49) = 68
So, the amount of sodium is 32 mg per cracker, 49 mg per pretzel and 68 mg per cookie.
Answer: 150 kPa
Explanation:
Given that,
Original volume of gas V1 = 30L
Original pressure of gas P1 = 105 kPa
New pressure of gas P2 = ?
New volume of gas V2 = 21L
Since pressure and volume are given while temperature is constant, apply the formula for Boyle's law
P1V1 = P2V2
105 kPa x 30L = P2 x 21L
3150 kPa L = P2 x 21L
P2 = 3150 kPa L / 21 L
P2 = 150 kPa
Thus, 150 kPa of pressure is required to compress the gas