Answer: low temperature
Explanation:-
S.I or M.K.S is a system for defining physical units as meter, kilogram, second, ampere, kelvin or celcius, candela, and mole together with a set of prefixes to indicate multiplication or division by a power of ten for measuring length, mass, time , current, temperature and amount of substance respectively.
Given :
lake length = 563 kilometers = 
High temperature =
Low temperature =
annual precipitation =762 mm= 
Thus low temperature in units of Fahrenheit is not an S.I unit of measurement.
Answer:

Explanation:
Hello.
In this case, taking into account that HCl has one molecule of hydrogen per mole of compound which weights 36.45 g/mol, we compute the number of molecules of hydrogen in hydrochloric acid by considering the given mass and the Avogadro's number:

Now, from the 180 g of water, we see two hydrogen molecules per molecule of water, thus, by also using the Avogadro's number we compute the molecules of hydrogen in water:

Thus, the total number of molecules turns out:

Regards.
Answer: The correct answer is the option: B. An element with eight valence electrons is chemically unstable.
Explanation:
Hello! Let's solve this!
We will analyze each of the options:
A. The group number of the element provides a clue to the number of valence electrons: it is correct, since it provides the number of valence electrons.
B. An element with eight valence electrons is chemically unstable: this is not correct, since elements with eight electrons in the valence shell cannot react because they already have the last complete shell. Therefore, they are chemically stable.
C. The points must be placed one at a time on each side of the chemical symbol: it is correct, because that is the way to make the point diagram.
D. An atom is chemically stable if all the points are paired: this is correct since this verifies that the point diagram has been done well.
We conclude that the correct answer is the option: B. An element with eight valence electrons is chemically unstable.
Hope this helps..... Stay safe and have a Merry Christmas!!!!!!!!! :D