Here is 5
Dissolved Load - elements dissolved in solution
Suspended Load - very fine grained sediment such as clay and silt carried in suspension. The size grains that can be carried in suspension are dependent on the current velocity
Wash Load - a subset of the suspension load, extremely small particles (clay) that will remain in suspension independent of turbulence in the river
Saltation Load - particles that are temporarily carried in suspension but move by bouncing along the bottom
<span>Bed Load - sediment that moves by rolling or sliding along the bottom. These are generally the coarser grained sediments such as sand and gravel.</span>
Answer: Wheel and Axle
Both of these work together to form a simple machine. You can't have one without the other.
If you try to turn just the axle itself, then you'll find it takes a lot of work. This is because the inertia of the axle wants to keep the object at rest. Also, you won't have a lot of torque due to the small radius compared to what a doorknob can offer.
Using a doorknob is like putting a (steering) wheel on an axle. This increases the radius and therefore increases the torque. You put in less work into the system and get more out of it.
Answer:
=8 atoms
Explanation:
In (NH4)2C2O4 there are four moles of Hydrogen in the compound (NH4), but there two molecules of (NH4) in this compound. That's what the 2 in (NH4)2 means, so multiply 4 x 2 = 8.
Hope this helps (:
Answer:
HOAc is stronger acid than HClO
ClO⁻ is stronger conjugate base than OAc⁻
Kb(OAc⁻) = 5.5 x 10⁻¹⁰
Kb(ClO⁻) = 3.3 x 10⁻⁷
Explanation:
Assume 0.10M HOAc => H⁺ + OAc⁻ with Ka = 1.8 x 10⁻⁵
=> [H⁺] = √Ka·[Acid] =√(1.8 x 10⁻⁵)(0.10) M = 1.3 x 10⁻³M H⁺
Assume 0.10M HClO => H⁺ + ClO⁻ with Ka = 3 x 10⁻⁸
=> [H⁺] = √(3 x 10⁻⁸)(0.10)M = 5.47 x 10⁻⁵M H⁺
HOAc delivers more H⁺ than HClO and is more acidic.
Kb = Kw/Ka, Kw = 1 x 10⁻¹⁴
Kb(OAc⁻) = 5.5 x 10⁻¹⁰
Kb(ClO⁻) = 3.3 x 10⁻⁷
Kp= (COCl2)/[(CO)(Cl2)]= 1.49 x 10^8
1.49 x 10^8= (COCl2/((2.22x10-4)(2.22x10-4))
COCl2= 1.49x10^8 x ((2.22x10-4)(2.22x10-4))= 7.34 atm