Answer:
d = 10.2 m
Explanation:
When the car travels up the inclined plane, its kinetic energy will be used to do the work in climbing up. So according to the law of conservation of energy, we can write that:

where,
m = mass of car
v = speed of car at the start of plane = (36 km/h)(1000 m/1 km)(1 h/3600 s)
v = 10 m/s
F = force on the car in direction of inclination = W Sin θ
W = weight of car = mg
θ = Angle of inclinition = 30°
d = distance covered up the ramp = ?
Therefore,

<u>d = 10.2 m</u>
Answer:
it sets consistent prices to achieve sustainability
Plants are autotrophs
Animals are heterotrophs
Answer:
Clockwise and counter clockwises, depands.
Explanation:
The direction of current in a loop of wire in a magnatic field depands on the direction in which the loop is moved and the applied magnatic field.
this is determined by what is called right hand rule.
I will give one scenario, let's say that the loop is moved upwards and the applied magnatic field is into the page (if you drew the loop in 2D on a piece of paper), in this case the direction would be clockwise.
The current flowing through the bulb as well the power of the bulb are 1.2A and 14.4 Watts respectively.
<h3>What current flows through the bulb as well as the power of the bulb?</h3>
From ohm's law; V = I × R
Where V is the voltage, I is the current and R is the resistance.
Also, Power is expressed as; P = V × I
Where V is voltage and I is current.
Given that;
- Resistance R = 10.0 ohms
- Voltage V = 12.0V
- Current I = ?
- Power P = ?
First, we determine the current flow through the bulb.
V = I × R
12.0V = I × 10.0 ohms
I = 12.0 ÷ 10.0
I = 1.2A
Next, we determine the power of the bulb.
P = V × I
P = 12.0V × 1.2A
P = 14.4 Watts
Therefore, the current flowing through the bulb as well the power of the bulb are 1.2A and 14.4 Watts respectively.
Learn more about Ohm's law here: brainly.com/question/12948166
#SPJ1