Answer:
The correct answer to the question is objects have zero acceleration.
Explanation:
Before answering the question, first we have to understand dynamic equilibrium .
A body moving with uniform velocity is said to be in dynamic equilibrium if the net external forces acting on the body is zero. Hence, the body is under balanced forces.
If the external forces acting on a body is not balanced, then the body will accelerate which will destroy its equilibrium condition. Hence, the necessary and sufficient condition for a body to be in dynamic equilibrium is that the forces are balanced.
When a body is in dynamic equilibrium, the body moves with uniform velocity along a straight line unless and until it is compelled by some external unbalanced forces.
Hence, the rate of change of velocity or acceleration of the body will be zero.
Answer:
B. counterclockwise
Explanation:
We can solve the problem by using the right-hand rule:
- put your thumb finger of the right hand in the same direction of the current in the wire (upward)
- wrap the other fingers around the thumb
- the direction of the other fingers will give the direction of the magnetic field lines
By doing these steps, we see that the other fingers form concentric circles in a counterclockwise direction (seen from above), so this is the direction of the magnetic field lines.
Answer:
A) 15.0 years
Explanation:
Due to the distance to the star system is in light-year units, we can compute the time by using:

then, Rob will take to complete the trip about 15 light-years.
hope this helps!!
The answer should be the number, or amount, of cycles that occur in a given time. Frequency is basically Hertz. Frequency is the number of waves that pass through a certain point every second. I hope that I was able to answer your question.
Peace out!
- Hershy103
You did not provide the options. However, the options are
I = 6.0, R= 4.0 ohms
I = 9.0, R= 2.0ohms
I = 3.0, R= 2.0ohms
I = 8.0, R= 8.0 ohms
Answer:
The order of the resistors from the highest to the lowest is:
I = 8.0, R= 8.0 ohms
I = 6.0, R= 4.0 ohms
I = 9.0, R= 2.0ohms
I = 3.0, R= 2.0 ohms
Explanation:
ohm's law states that voltage across a conductor is directly proportional to the current flowing through it. V = IR
Based on this formula, the voltages in each of the resistors are calculated below from the highest to the lowest
V = 8 * 8 =64 volts
V = 6 * 4 =24 volts
V = 9 * 2 =18 volts
V = 3 * 2 =6 volts