Answer:
W = 1418.9 J = 1.418 KJ
Explanation:
In order to find the work done by the pull force applied by Karla, we need to can use the formula of work done. This formula tells us that work done on a body is the product of the distance covered by the object with the component of force applied in the direction of that displacement:
W = F.d
W = Fd Cosθ
where,
W = Work Done = ?
F = Force = 151 N
d = distance covered = 10 m
θ = Angle with horizontal = 20°
Therefore,
W = (151 N)(10 m) Cos 20°
<u>W = 1418.9 J = 1.418 KJ</u>
Answer:
As the earth is an oblate spheroid, its radius near the equator is more than its radius near poles. Since for a source mass, the acceleration due to gravity is inversely proportional to the square of the radius of the earth, it varies with latitude due to the shape of the earth.
Formula: g = GM/r2
Dimensional Formula: M0L1T-2
Values of g in SI: 9.806 ms-2
Explanation:
Please Mark me brainliest
Answer:corrosion (i believe)
Explanation:
<h2>
Answer:</h2>
38.14Ω
<h2>
Explanation:</h2>
Let's solve this question using Ohm's law which states that the current (I) flowing through a conductor is directly proportional to the potential difference or voltage (V) across it. Mathematically;
V = I R -------------------(i)
<em>Where</em>;
R is the constant of proportionality called resistance of the conductor and is measured in Ohms (Ω)
<em>From the question;</em>
V = 18.5V
I = 0.485A
<em>Substitute these values into equation (i) as follows;</em>
18.5 = 0.485 x R
<em>Solve for R;</em>
R = 18.5 / 0.485
R = 38.14Ω
Therefore the resistance of the bulb is 38.14Ω