Answer:
17.55 m/s²
Explanation:
Parameters given:
Mass of Krypton, M = 7.6 * 10^23 kg
Radius, R = 1.7 * 10^6 m
Gravitational constant, G = 6.6726 * 10^(-11) Nm²/kg²
Acceleration due to gravity of planet of mass M is given as:
g = GM/R²
Since the object is close to the surface of Krypton, we can say that the distance from the Centre of Krypton is the radius of the planet Krypton.
Therefore,
g = (6.6726 * 10^(-11) * 7.6 * 10^23)/(1.7 * 10^6)²
g = 17.55 m/s²
The pictures are not attached, therefore, I cannot give a specific choice.
However, I will try to help you out.
The angle of incidence is defined as the angle formed between the ray of light and the normal to the surface that the ray is falling on.
The angle of incidence can be shown in the attached image.
Therefore, for your question, choose the image on which the above description applies.
Hope this helps :)
Answer:
The average velocity is 50 km/h south
Explanation:
The average velocity of an object is its total displacement divided by
the total time taken.
That means it is the rate at which an object changes its position from
one place to another.
Average velocity is a vector quantity.
The SI unit is meters per second.
A bicycle that starts 100 km south and is 120 km south of town after
0.4 hour.
The displacement = 120 - 100 = 20 km south
The time = 0.4 hour
The average velocity =
, where D is the displacement
and t is the time
The average velocity of the bicycle =
km/h
<em>The average velocity is 50 km/h south</em>
If you want it in meter per second, change the kilometer to meter
and change the hour to seconds
1 km = 1000 m
1 hour = 60 × 60 = 3600 seconds
The average velocity of the bicycle =
m/s south
It would be helpful if you gave me a bit more information on what the cars speed is