Answer:
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Explanation:
The Impulse Theorem states that the impulse experimented by the hockey park is equal to the vectorial change in its linear momentum, that is:
(1)
Where:
- Impulse, in kilogram-meters per second.
- Mass, in kilograms.
- Initial velocity of the hockey park, in meters per second.
- Final velocity of the hockey park, in meters per second.
If we know that
,
and
, then the impulse applied by the stick to the park is approximately:
![I = (0.2\,kg)\cdot \left(35\,\hat{i}\right)\,\left[\frac{m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%20%280.2%5C%2Ckg%29%5Ccdot%20%5Cleft%2835%5C%2C%5Chat%7Bi%7D%5Cright%29%5C%2C%5Cleft%5B%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%5D)
![I = 7\,\hat{i}\,\left[\frac{kg\cdot m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%207%5C%2C%5Chat%7Bi%7D%5C%2C%5Cleft%5B%5Cfrac%7Bkg%5Ccdot%20m%7D%7Bs%7D%20%5Cright%5D)
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Answer:
19.2*10^6 s
Explanation:
The equation for time dilation is:

Then, if it is observed to have a life of 6*10^6 s, and it travels at 0.95 c:

It has a lifetime of 19.2*10^6 s when observed from a frame of reference in which the particle is at rest.
In order to answer this exercise you need to use the formulas
S = Vo*t + (1/2)*a*t^2
Vf = Vo + at
The data will be given as
Vf = final velocity = ?
Vo = initial velocity = 1.4 m/s
a = acceleration = 0.20 m/s^2
s = displacement = 100m
And now you do the following:
100 = 1.4t + (1/2)*0.2*t^2
t = 25.388s
and
Vf = 1.4 + 0.2(25.388)
Vf = 6.5 m/s
So the answer you are looking for is 6.5 m/s
Answer:
A) the ammeter is x
B)
- voltage across R₁ (left resistor) = 0.75 V
- voltage across the right one = 0.3 V
C) 1.05 V
Explanation:
From the diagram attached below;
A) Assuming the homes were wired in series, and one of the homes face short circuit then all the houses would face power cut but it doesn't happen. So they must be connected in parallel.
Therefore; The ammeter is connected in series, Hence, the ammeter is x and the voltmeter must be z.
B)
Given that:
x = 0.15 A
z = 0.3 V
Resistor (R) on the left = 5 ohms
Then, voltage across R₁ (left resistor) = 5×(x)
= 5×0.15
= 0.75 V
voltage across the right one = z = 0.3 V
C)
The total voltage of battery = 0.75+0.3 = 1.05 V