Answer:
Power will be 0.2023 watt
And when amplitude is halved then power will be 0.0505 watt
Explanation:
We have given mass of the Piano wire m = 2.60 gram = 0.0026 kg
Length of wire l = 84 cm = 0.84 m
So mass density 
Tension in the wire T = 25 N
Frequency f = 120 Hz
So angular frequency 
And amplitude A = 1.6 mm = 0.0016 m
We have to find the generated power
Power is given by 
From the relation we can see that power 
So if amplitude is halved then power will be
times
So power will be equal to 
A) a mouse, to an order of magnitude = 0.1 m ( a tenth of a meter ) That would be a big mouse but the alternatives are 1 meter or one hundredth of a meter... so go with 1/10th
<span>b) Easy = 1 meter </span>
<span>c) two choices 10m or 100 m . Go with 100 m </span>
<span>d) Stretch it out , trunk tip to tail tip - call it 10 m </span>
<span>e) Your choice 100 m or 1000 m..... These are estimates. So long as you are within one order of magnitude you can't really be given wrong. So I'd say 100m</span>
Answer:
a)Distance traveled during the first second = 4.905 m.
b)Final velocity at which the object hits the ground = 38.36 m/s
c)Distance traveled during the last second of motion before hitting the ground = 33.45 m
Explanation:
a) We have equation of motion
S = ut + 0.5at²
Here u = 0, and a = g
S = 0.5gt²
Distance traveled during the first second ( t =1 )
S = 0.5 x 9.81 x 1² = 4.905 m
Distance traveled during the first second = 4.905 m.
b) We have equation of motion
v² = u² + 2as
Here u = 0, s= 75 m and a = g
v² = 0² + 2 x g x 75 = 150 x 9.81
v = 38.36 m/s
Final velocity at which the object hits the ground = 38.36 m/s
c) We have S = 0.5gt²
75 = 0.5 x 9.81 x t²
t = 3.91 s
We need to find distance traveled last second
That is
S = 0.5 x 9.81 x 3.91² - 0.5 x 9.81 x 2.91² = 33.45 m
Distance traveled during the last second of motion before hitting the ground = 33.45 m
<h2>Answer: The astronauts are falling at the same rate as the space shuttle as it orbits around earth</h2>
The astronauts seem to float because they are in free fall just like the spacecraft.
However, although they are constantly falling on the Earth, they do not fall because the ship orbits at a sufficient speed (in the same direction of rotation of the Earth) so that the centrifugal force is balanced with the Earth's gravitational pull.
In other words:
The spaccraft and the astronauts are in free fall but the Earth's surface will never be reached as long as they does not decrease the speed.
Then, as they accelerate toward Earth (regardless of their mass), it curves beneath them and never comes close.
That's why astronauts, having the same acceleration as the spacecraft, feel weightless and see themselves floating.
Answer:
18 N
Explanation:
Force can be found using the following formula.
f= m*a
where m is the mass and a is the acceleration.
We know the desk has a mass of 36 kilograms. We also know that its acceleration is 0.5 m/s^2.
m= 36 kg
a= 0.5 m/s^2
Substitute these values into the formula.
f= 36 kg * 0.5 m/s^2
Multiply 36 and 0.5
f=18 kg m/s^2
1 kg m/s^2 is equivalent to 1 Newton, or N.
f= 18 Newtons
The force being applied is 18 kg m/s^2, Newtons, or N