W=ΔKE , W=-5000j
KEinitial=(1/2)mv² , KEfinal=0j
ΔKE=-(1/2)mv²
-5000=-(1/2)(100kg)v²
v=10 m/s
Answer:
Ur litterly dog water ✌️✌️✌️✌️✌️✌️✌️✌️✌️✌️✌️✌️
Answer:
New volume of the baloon is 0.02325m^3
Explanation:
To answer this question we need to know the ideal gas law, which says:
p•V = n•R•T
p is pressure, V is volume, n is amount of substance (in moles), R is constant value and T is temperature.
Since it's stated that n and T are constant, and we know that R is a constant too, that means that p•V = constant value. Basically, that means that p1•V1 (pressure and volume before the pressure increase) equals to p2•V2 (pressure and volume after the pressure increase).
That means that:
100000 Pa • 0.0279 m^3 = 120000 Pa • V2. Next, V2= 100000•0.0279/120000. So, V2=0.02325m^3.
Answer:
a = 0.8 m/s^2
Explanation:
Force equation: F = ma
F = ma -> a = F/m = 2.8*10^3 N / 3.5*10^3 kg = 0.8 m/s^2
Answer:
Dehydration reactions assemble polymers, and hydrolysis reactions break down polymers.
Explanation:
dehydration reaction is a conversion that involves the loss of water from the reacting molecule or ion.
Hydrolysis is defined as any chemical reaction in which a molecule of water ruptures one or more chemical bonds.
Dehydration reactions link monomers together into polymers by releasing water, and hydrolysis breaks polymers into monomers using a water molecule. Monomers are just single unit molecules and polymers are chains of monomers.