Answer:
The correct option is;
Sphere I is positively charged and sphere II is negatively charged
Explanation:
The charging of the spheres by induction is achieved by introducing a charge to the metal spheres that are insulated from the ground to prevent loss of charge by placing them on insulating stand
The two spheres are brought into contact by the connection of a conducting wire between the spheres I and II
The presence of the positively charged sphere III draws attracts electrons towards sphere II while the net positive charge moves towards sphere I
While the spheres I and II are still polarized, the conducting wire is removed while the presence of sphere III continues to keep sphere II negative compared to sphere I
After removing the connecting wire, sphere III is removed leaving the excess negative charge on sphere II and the excess positive charge on sphere I
The net charges then evenly redistribute themselves on each sphere creating two oppositely charged spheres.
Answer:
12 mins
Explanation:
The distance covered is 5 km, divide this by 25 to get the fraction of an hour it takes. Doing this you get .2, times this by 60 min (1 hour) to get how many mins it takes
<span>Avogadro's number
represents the number of units in one mole of any substance. This has the value
of 6.022 x 10^23 units / mole. This number can be used to convert the number of
atoms or molecules into number of moles.
</span>1.83 moles K (6.022 x 10^23 atoms / mole ) = 1.10 x 10^24 atoms K
Answer:
4.96×10¯¹⁰ N
Explanation:
The following data were obtained from the question:
Mass 1 (M1) = 300 Kg
Mass 2 (M2) = 300 Kg
Separating distance (r) = 110 m
Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²
Gravitational force (F) =?
The gravitational force between the two goal posts can be obtained as follow:
F = GM1M2 / r²
F = 6.67×10¯¹¹ × 300 × 300 / 110²
F = 6.003×10¯⁶ / 12100
F = 4.96×10¯¹⁰ N
Therefore the gravitational force between the two goal posts is 4.96×10¯¹⁰ N