The far right.
Fg is gravity which always acts down and since we assume the floor is flat the normal, Fn, acts opposite gravity, so straight up.
But you’re probably wondering about the pushing force, Fp, and the friction force, Ff. For the Fp, consider where the applied force is coming from. The head of the broom is on the floor and the man’s arms, where he’s applying the force from, is above and to the left, so when the man pushes the broom the force is down and to the right. The broom my not be moving down, but the applied force is still in that direction. And Ff always acts against motion so since the broom moves to the right, the friction is to the left.
Answer:
The speed of the top of the wheel is twice the speed of the car.
That is: 72 m/s
Explanation:
To find the speed of the top of the wheel, we need to combine to velocities: the tangential velocity of the rotating wheel due to rotational motion
- with
being the wheel's angular velocity,
plus the velocity due to the translation of the center of mass (v = 36 m/s).
The wheel's angular velocity (in radians per second) can be obtained using the tangential velocity for the pure rotational motion and it equals:
Then the addition of these two velocities equals:

Answer:
C. All waves have the same speed.
Explanation:
Wave equation is given as;
V = fλ
where;
V is the speed of the wave
f is the frequency of the wave
λ is the wavelength
The speed of the wave depends on both wavelength and frequency
The speed of the electromagnetic waves in a vacuum is 3 x 10⁸ m/s, this also the speed of light which is constant for all electromagnetic waves.
Therefore, the correct option is "C"
C. All waves have the same speed.
Answer:
Explanation:
Given
fly is at height of 
mouse is at a distance of 30 ft from bush
if
is the angle of elevation then
using trigonometric relation



