An echo is an example of the <em>reflection</em> of sound waves.
Potential energy, is energy due to its position.
Given: Mass m = 40 Kg; Height h = 50 m
Required: Potential energy P.E = ?
Formula: P.E = mgh P.E = (40 Kg)(9.8 m/s²)(50 m)
P.E = 19,600 J
A pendulum is not a wave.
-- A pendulum doesn't have a 'wavelength'.
-- There's no way to define how many of its "waves" pass a point
every second.
-- Whatever you say is the speed of the pendulum, that speed
can only be true at one or two points in the pendulum's swing,
and it's different everywhere else in the swing.
-- The frequency of a pendulum depends only on the length
of the string from which it hangs.
If you take the given information and try to apply wave motion to it:
Wave speed = (wavelength) x (frequency)
Frequency = (speed) / (wavelength) ,
you would end up with
Frequency = (30 meter/sec) / (0.35 meter) = 85.7 Hz
Have you ever seen anything that could be described as
a pendulum, swinging or even wiggling back and forth
85 times every second ? ! ? That's pretty absurd.
This math is not applicable to the pendulum.
its average thickness is 10,000 light-years,
F = 2820.1 N
Explanation:
Let the (+)x-axis be up along the slope. The component of the weight of the crate along the slope is -mgsin15° (pointing down the slope). The force that keeps the crate from sliding is F. Therefore, we can write Newton's 2nd law along the x-axis as
Fnet = ma = 0 (a = 0 no sliding)
= F - mgsin15°
= 0
or
F = mgsin15°
= (120 kg)(9.8 m/s^2)sin15°
= 2820.1 N