Mole is equal to 6.02*10^23 atoms, and you have 7.00*10^23 atoms
Answer:
Pb is the substance that experiments the greatest temperature change.
Explanation:
The specific heat capacity refers to the amount of heat energy required to raise in 1 degree the temperature of 1 gram of substance. The highest the heat capacity, the more energy it would be required. These variables are related through the equation:
Q = c . m . ΔT
where,
Q is the amount of heat energy provided (J)
c is the specific heat capacity (J/g.°C)
m is the mass of the substance
ΔT is the change in temperature
Since the question is about the change in temperature, we can rearrange the equation like this:

All the substances in the options have the same mass (m=10.0g) and absorb the same amount of heat (Q=100.0J), so the change in temperature depends only on the specific heat capacity. We can see in the last equation that they are inversely proportional; the lower c, the greater ΔT. Since we are looking for the greatest temperature change, It must be the one with the lowest c, namely, Pb with c = 0.128 J/g°C. This makes sense because Pb is a metal and therefore a good conductor of heat.
Its change in temperature is:

Lose electrons - electrons want to fill their outer valence shell, so sometimes instead of gaining it is easier to lose some and have a filled outer shell
Answer:
correct option is (a)
The solution would be using this: C6H5COOH = H+ + C6H5COO Ka = 6.5 x 10^-5 = (H+)(C6H5COO-) over
(C6H5COOH)
Let X = moles per liter (H+) and also = moles per liter (C6H5COO-)
Ka = 6.5 x 10^-5 = (X)(X) over .350 molar = acid solution 6.5 x 10^-5 = X^2 over .350
X^2 = 6.5 x 10^-5 times .350 which = 2.275 x 10^-5
x = V2.275 x 10^-5
X = 1.5083 x 10^-5 moles per liter H+
pH = -log(H+) = -log 1.5083 x 10^-5 which
= 4.6215
Answer:
The direction of the field is taken to be the direction of the force it would exert on a positive test charge. The electric field is radially outward from a positive charge and radially in toward a negative point charge.
Explanation: