1) <span>NaNO3 and H2O - no reaction , it is dissolution
2) no hydrogen to make water
3) </span><span>Fe(OH)3 (base) and H2SO4(acid))
base +acid ----> salt +water
4) </span><span>Li2O and Ba(OH)2
basic oxide and base ----> no reaction
so Answer number 3)
</span> 2Fe(OH)3 +3 H2SO4 ------> Fe2(SO4)3 + 6H2O<span>
</span>
Answer:
Option (2)
Explanation:
Cohesion is usually defined as the contrasting property by which the water molecules are attached to one another, and adhesion is the property by which the molecular substances are linked to the molecules of other substances.
Since, the water molecules are able to form inter-molecular hydrogen bonding, so they are comprised of strong cohesive force.
And, as the water molecules are able to stick to the walls of the container, so they tend to show more of the properties for adhesion.
Thus, according to the given condition, water molecules are sticking to other substances and this is the property of adhesion.
Hence, the correct answer is option (2).
Answer:
0.1357 M
Explanation:
(a) The balanced reaction is shown below as:

(b) Moles of
can be calculated as:
Or,
Given :
For
:
Molarity = 0.1450 M
Volume = 10.00 mL
The conversion of mL to L is shown below:
1 mL = 10⁻³ L
Thus, volume = 10×10⁻³ L
Thus, moles of
:
Moles of
= 0.00145 moles
From the reaction,
1 mole of
react with 2 moles of NaOH
0.00145 mole of
react with 2*0.00145 mole of NaOH
Moles of NaOH = 0.0029 moles
Volume = 21.37 mL = 21.37×10⁻³ L
Molarity = Moles / Volume = 0.0029 / 21.37×10⁻³ M = 0.1357 M
Answer:
Transition metals, alkali metals, alkaline earth metals Transition metals - Middle of the periodic chart, only average reactivity. alkali metals - As mentioned above, very reactive. Bad choice, going from lower reactivity to higher reactivity.
Hope this answer is right!
Answer:

Explanation:
The pressure, the volume and the temperature of an ideal gas are related to each other by the equation of state:

where
p is the pressure of the gas
V is the volume of the gas
n is the number of moles
R is the gas constant
T is the absolute temperature
For the gas in this problem:
n = 2.00 mol is the number of moles
V = 17.4 L is the gas volume
p = 3.00 atm is the gas pressure
is the absolute temperature
Solving for R, we find the gas constant:
