I think it would be d because development in nations needs more population
Answer:
The equation of equilibrium at the top of the vertical circle is:
\Sigma F = - N - m\cdot g = - m \cdot \frac{v^{2}}{R}
The speed experimented by the car is:
\frac{N}{m}+g=\frac{v^{2}}{R}
v = \sqrt{R\cdot (\frac{N}{m}+g) }
v = \sqrt{(5\,m)\cdot (\frac{6\,N}{0.8\,kg} +9.807\,\frac{kg}{m^{2}} )}
v\approx 9.302\,\frac{m}{s}
The equation of equilibrium at the bottom of the vertical circle is:
\Sigma F = N - m\cdot g = m \cdot \frac{v^{2}}{R}
The normal force on the car when it is at the bottom of the track is:
N=m\cdot (\frac{v^{2}}{R}+g )
N = (0.8\,kg)\cdot \left(\frac{(9.302\,\frac{m}{s} )^{2}}{5\,m}+ 9.807\,\frac{m}{s^{2}} \right)
N=21.690\,N
Answer:
0.09 N
Explanation:
We are given that
Radius of disk,r=6 cm=
1 m=100 cm
B=1 T
Current,I=3 A
We have to find the frictional force at the rim between the stationary electrical contact and the rotating rim.





Torque due to friction

Where friction force=F


Substitute the values


The plum pudding model, which has been abandoned since the discovery of the nucleus, stated that electrons were embedded in a "mush" of positive material. The nuclear model says they are placed around a central nucleus.
Answer:
tan is 15 for that triangle