Answer:
Q = 424523.22 kw
Explanation:

k = 48.9 W/m - K
c = 0.115 KJ/kg- K


T_∞ = 35 degree celcius
velocity of air stream = 15 m/s
D = 40 cm
L = 200 cm
mass flow rate




solving for h

h = 675.6 kw/m^2K

Q = 675.6*2.513*(285-35)
Q = 424523.22 kw
Answer:
1791 secs ≈ 29.85 minutes
Explanation:
( Initial temperature of slab ) T1 = 300° C
temperature of water ( Ts ) = 25°C
T2 ( final temp of slab ) = 50°C
distance between slab and water jet = 25 mm
<u>Determine how long it will take to reach T2</u>
First calculate the thermal diffusivity
∝ = 50 / ( 7800 * 480 ) = 1.34 * 10^-5 m^2/s
<u>next express Temp as a function of time </u>
T( 25 mm , t ) = 50°C
next calculate the time required for the slab to reach 50°C at a distance of 25mm
attached below is the remaining part of the detailed solution
Answer:
A: Agricultural Engineer
Explanation:
I had this same question for a test and got it right with a being the answer :)
Answer:
Basically there are two principal differences between the convection and conduction heat transfer
Explanation:
The conduction heat transfer is referred to the transfer between two solids due a temperature difference, while for, the convective heat transfer is referred to the transfer between a fluid (liquid or gas) and a solid. Also, they used different coefficients for its calculation.
We can include on the explanation that conduction thermal transfer is due to temperature difference, while convection thermal transfer is due to density difference.
The mechanical energy of an object is a combination of its potential energy and its <em><u>kinetic</u></em><em><u> </u></em><em><u>energy</u></em><em><u>.</u></em>