Answer:
a) 180 m³/s
b) 213.4 kg/s
Explanation:
= 1 m²
= 100 kPa
= 180 m/s
Flow rate
![Q=A_1V_1\\\Rightarrow Q=1\times 180\\\Rightarrow Q=180\ m^3/s](https://tex.z-dn.net/?f=Q%3DA_1V_1%5C%5C%5CRightarrow%20Q%3D1%5Ctimes%20180%5C%5C%5CRightarrow%20Q%3D180%5C%20m%5E3%2Fs)
Volumetric flow rate = 180 m³/s
Mass flow rate
![\dot{m}=\rho Q\\\Rightarrow \dot m=\frac{P_1}{RT} Q\\\Rightarrow \dot m=\frac{100000}{287\times 293.15}\times 180\\\Rightarrow \dotm=213.94\ kg/s](https://tex.z-dn.net/?f=%5Cdot%7Bm%7D%3D%5Crho%20Q%5C%5C%5CRightarrow%20%5Cdot%20m%3D%5Cfrac%7BP_1%7D%7BRT%7D%20Q%5C%5C%5CRightarrow%20%5Cdot%20m%3D%5Cfrac%7B100000%7D%7B287%5Ctimes%20293.15%7D%5Ctimes%20180%5C%5C%5CRightarrow%20%5Cdotm%3D213.94%5C%20kg%2Fs)
Mass flow rate = 213.4 kg/s
Charlidamelio is overrated
Answer:
Here is the code for you:
function distanceMiles = CalculateDistance(timeHours, rateKPH)
%timeHours: Time in hours
%rateKPH: Rate in kilometers
rateMPH = KilometersToMiles(rateKPH); %Call KilometersToMiles function(below) to assign
%rateMPH with the corresponding speed in miles per
%hour
distanceMiles = rateMPH * timeHours;
end
function milesValue = KilometersToMiles(KilometersValue)
milesValue = KilometersValue * 0.6213712;
end
And the output screenshot is: [Attached]
Answer:
d) Is the thermal conductivity of the medium constant or variable.
Explanation:
As we know that
Heat equation with heat generation at unsteady state and with constant thermal conductivity given as
![\dfrac{d^2T}{dx^2}+\dfrac{d^2T}{dy^2}+\dfrac{d^2T}{dz^2}+\dfrac{\dot{q}_g}{K}=\dfrac{1}{\alpha }\dfrac{dT}{dt}](https://tex.z-dn.net/?f=%5Cdfrac%7Bd%5E2T%7D%7Bdx%5E2%7D%2B%5Cdfrac%7Bd%5E2T%7D%7Bdy%5E2%7D%2B%5Cdfrac%7Bd%5E2T%7D%7Bdz%5E2%7D%2B%5Cdfrac%7B%5Cdot%7Bq%7D_g%7D%7BK%7D%3D%5Cdfrac%7B1%7D%7B%5Calpha%20%7D%5Cdfrac%7BdT%7D%7Bdt%7D)
With out heat generation
![\dfrac{d^2T}{dx^2}+\dfrac{d^2T}{dy^2}+\dfrac{d^2T}{dz^2}=\dfrac{1}{\alpha }\dfrac{dT}{dt}](https://tex.z-dn.net/?f=%5Cdfrac%7Bd%5E2T%7D%7Bdx%5E2%7D%2B%5Cdfrac%7Bd%5E2T%7D%7Bdy%5E2%7D%2B%5Cdfrac%7Bd%5E2T%7D%7Bdz%5E2%7D%3D%5Cdfrac%7B1%7D%7B%5Calpha%20%7D%5Cdfrac%7BdT%7D%7Bdt%7D)
In 2 -D with out heat generation with constant thermal conductivity
![\dfrac{d^2T}{dx^2}+\dfrac{d^2T}{dy^2}=\dfrac{1}{\alpha }\dfrac{dT}{dt}](https://tex.z-dn.net/?f=%5Cdfrac%7Bd%5E2T%7D%7Bdx%5E2%7D%2B%5Cdfrac%7Bd%5E2T%7D%7Bdy%5E2%7D%3D%5Cdfrac%7B1%7D%7B%5Calpha%20%7D%5Cdfrac%7BdT%7D%7Bdt%7D)
Given equation
![\dfrac{d^2T}{dx^2}+\dfrac{d^2T}{dy^2}=\dfrac{1}{a }\dfrac{dT}{dt}](https://tex.z-dn.net/?f=%5Cdfrac%7Bd%5E2T%7D%7Bdx%5E2%7D%2B%5Cdfrac%7Bd%5E2T%7D%7Bdy%5E2%7D%3D%5Cdfrac%7B1%7D%7Ba%20%7D%5Cdfrac%7BdT%7D%7Bdt%7D)
So we can say that this is the case of with out heat generation ,unsteady state and with constant thermal conductivity.
So the option d is correct.
d) Is the thermal conductivity of the medium constant or variable.
Answer:
foot pedal
Explanation: mark brainlest plz