1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
love history [14]
3 years ago
7

A homeowner consumes 260 kWh of energy in July when the family is on vacation most of the time. Determine the average cost per k

Wh for the month using the following residential rate schedule: Base monthly charge of $10.00. First 100 kWh per month at 16 cents/kWh. Next 200 kWh per month at 10 cents/kWh. Over 300 kWh per month at 6 cents/kWh.
Engineering
1 answer:
Llana [10]3 years ago
7 0

Answer:

16.2 cents

Explanation:

Given that a homeowner consumes 260 kWh of energy in July when the family is on vacation most of the time.

Where Base monthly charge of $10.00. First 100 kWh per month at 16 cents/kWh. Next 200 kWh per month at 10 cents/kWh. Over 300 kWh per month at 6 cents/kWh.

For the first 100 kWh:

16 cent × 100 = 1600 cents = 16 dollars

Since 1 dollar = 100 cents

For the remaining energy:

260 - 100 = 160 kwh

10 cents × 160 = 1600 cents = 16 dollars

The total cost = 10 + 16 + 16 = 42 dollars

Note that the base monthly of 10 dollars is added.

The cost of 260 kWh of energy consumption in July is 42 dollars

To determine the average cost per kWh for the month of July, divide the total cost by the total energy consumed.

That is, 42 / 260 = 0.1615 dollars

Convert it to cents by multiplying the result by 100.

0.1615 × 100 = 16.15 cents

Approximately 16.2 cents

You might be interested in
What is Back EMF? How does it limits the speed of a permanent magnet DC?
ss7ja [257]

Answer and Explanation:

The DC motor has coils inside it which produces magnetic field inside the coil and due to thus magnetic field an emf is induced ,this induced emf is known as back emf. The back emf always acts against the applied voltage. It is represented by E_b

The back emf of the DC motor is given by E_b=\frac{NP\Phi }{60A}

Here N is speed of the motor ,P signifies the number of  poles ,Z signifies the the total number of conductor  and A is number of parallel paths

As from the relation we can see that back emf and speed ar dependent on each other it means back emf limits the speed of DC motor

8 0
3 years ago
Tech a says that the weight of the flywheel smoothest out the engines power pulses. Tech B says that the flexplate and torque co
lakkis [162]

Answer:

both statement is correct

Explanation:

Flywheel engine uses to reduce fluctuations.

And                                                                

FlexPlate is a metal disk that connects the output from the engine to the input of the torque converter. This will replace the flywheel

so that both statement is correct

4 0
3 years ago
Plis 3 conclusiones de este video
vazorg [7]
No hay videos? de cual video estás hablando?
6 0
3 years ago
(D)<br> 13. Describe the differences between an impact socket and a conventional socket.
docker41 [41]

Answer:

The wall of an impact socket is around 50% thicker than that of a regular socket, making it suitable for use with pneumatic impact tools, whereas regular sockets should only be used on hand tools.

Explanation:

This allows the socket to remain securely attached to the impact wrench anvil, even under high stress situations.

3 0
3 years ago
A certain part of the cast iron piping of a water distribution system involves a parallel section. Both parallel pipes have a di
Bezzdna [24]

Answer :

<h3>Flow rate in pipe B is = 0.3094 \frac{m^{3} }{s}</h3>

Explanation:

Given :

Length of pipe A L_{A}  = 1500 m

Length of pipe B L_{B} = 2500 m

Flow rate through pipe A Q_{A}  = 0.4 \frac{m^{3} }{s}

Diameter of pipe D = 30 \times 10^{-2} m

Velocity from pipe A,

  V _{A} = \frac{Q_{A} }{A}

  V _{A} = \frac{0.4 \times 4 }{\pi ( 30 \times 10^{-2} )^{2}  }

  V_{A}  = 5.66 \frac{m}{s}

Here, head loss is same because height is same.

    h_{a} = h_{b}

L_{A} V_{A} ^{2} = L_{B}  V_{B} ^{2}

V_{B} = \sqrt{\frac{1500}{2500}}    (5.66)

V_{B} = 4.38 \frac{m}{s}

Now rate of flow from pipe B is,

Q_{B}  = V_{B} A

Q_{B}  = \frac{\pi }{4}  (0.3)^{2} \times 4.38

Q_{B} = 0.3094 \frac{m^{3} }{s}

4 0
3 years ago
Other questions:
  • If you are sampling a 50Hz signal, what is the minimum sampling rate necessary to prevent aliasing?Why?
    7·1 answer
  • How does emotion affect a persons driving
    15·1 answer
  • A thermistor is a temperature‐sensing element composed of a semiconductor material, which exhibits a large change in resistance
    13·1 answer
  • Describe ICP/OES in detail.
    6·2 answers
  • A motorist enters a freeway at 25 mi/h and accelerates uniformly to 65 mi/h. From the odometer in the car, the motorist knows th
    14·1 answer
  • Chemical milling is used in an aircraft plant to create pockets in wing sections made of an aluminum alloy. The starting thickne
    5·1 answer
  • What is the difference between digital instruments and decimal scaled instruments to measure
    6·1 answer
  • For some transformation having kinetics that obey the Avrami equation, the parameter n is known to have a value of 2. If, after
    14·1 answer
  • Pedro holds a heavy science book over his head for 10 minutes. Petro is doing work during that time. True or False
    8·1 answer
  • Which option shows the most valuable metallic properties
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!