Answer:
- <em>As the temperature of a sample of matter is increased, the average kinetic energy of the particles in the sample </em><u>increase</u><em>.</em>
Explanation:
The <em>temperature</em> of a substance is the measure of the <em>average kinetic energy </em>of its partilces.
The temperature, i.e. how hot or cold is a substance, is the result of the collisions of the particles (atoms or molecules) of matter.
The kinetic theory of gases states that, if the temperature is the same, the average kinetic energy of any gas is the same, regardless the gas and other conditions.
This equation expresses it:
Where Avg KE is the average kinetic energy, R is the universal constant of gases, N is Avogadro's constnat, and T is the temperature measure in absolute scale (Kelvin).
As you see, in that equation Avg KE is propotional to T, which means that as the temperature is increased, the average kinetic energy increases.
Heat is the first one...and the secound one is kinetic
The chemical that effects blood pressure for both the short and long term is Angiotensin II
Answer:
Single Displacement reaction
In a displacement reaction, a more reactive element replaces a less reactive element from a compound.
Change in colour takes place with no precipitate forms.
Metals react with the salt solution of another metal.
Examples:
2KI + Cl2 → 2KCl + I2
CuSO4 + Zn → ZnSO4 + Cu
Double displacement reaction
In a double displacement reaction, two atoms or a group of atoms switch places to form new compounds.
Precipitate is formed.
Salt solutions of two different metals react with each other.
Examples:
Na2SO4 + BaCl2 → BaSO4 + 2NaCl
2KBr + BaCl2 → 2KCl + BaBr2
Hope this helps...Please Mark as Brainliest!!
Explanation:
Dehydrohalogenation reactions occurs as elimination reactions through the following mechanism:
Step 1: A strong base(usually KOH) removes a slightly acidic hydrogen proton from the alkyl halide.
Step 2: The electrons from the broken hydrogen‐carbon bond are attracted toward the slightly positive carbon (carbocation) atom attached to the chlorine atom. As these electrons approach the second carbon, the halogen atom breaks free.
However, elimination will be slower in the exit of Hydrogen atom at the C2 and C3 because of the steric hindrance by the methyl group.
Elimination of the hydrogen from the methyl group is easier.
Thus, the major product will A