La longitud del arco (s) en una circunferencia, conociendo el radio (r) y el ángulo (θ) que forman los dos radios, es:
s = r∙θ
Con el ángulo en radianes
F V7 w7 :
Answer:
11m
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define expression</u>
2(5m) + m
<u>Step 2: Simplify</u>
- Multiply: 10m + m
- Add: 11m
<span>y=2(1/2)^x
</span>
x = 0; <span>y=2(1/2)^0 = 2(1) = 2
x = 1; </span><span>y=2(1/2)^1 = 2(1/2) = 1
answer is the last one.</span>
Answer:
Step-by-step explanation:
![\sqrt[3]{125y^9z^6}\\ \\ \sqrt[3]{5^3(y^3)^3(z^2)^3}\\ \\ 5y^3z^2](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B125y%5E9z%5E6%7D%5C%5C%20%5C%5C%20%5Csqrt%5B3%5D%7B5%5E3%28y%5E3%29%5E3%28z%5E2%29%5E3%7D%5C%5C%20%5C%5C%205y%5E3z%5E2)