<span>The answer is "A tetrahedral molecule has 4 regions of high electron density around the central atom. These molecules have central atoms with 0 lone pairs and 4 atoms bonded to them." Based on the octet rule, the atom must have 8 electrons to become stable. As a result, the molecule will not have lone pairs.</span>
Answer: First, here is the balanced reaction: 2C4H10 + 13O2 ===> 8CO2 + 10H2O.
This says for every mole of butane burned 4 moles of CO2 are produced, in other words a 2:1 ratio.
Next, let's determine how many moles of butane are burned. This is obtained by
5.50 g / 58.1 g/mole = 0.0947 moles butane. As CO2 is produced in a 2:1 ratio, the # moles of CO2 produced is 2 x 0.0947 = 0.1894 moles CO2.
Now we need to figure out the volume. This depends on the temperature and pressure of the CO2 which is not given, so we will assume standard conditions: 273 K and 1 atmosphere.
We now use the ideal gas law PV = nRT, or V =nRT/P, where n is the # of moles of CO2, T the absolute temperature, R the gas constant (0.082 L-atm/mole degree), and P the pressure in atmospheres ( 1 atm).
V = 0.1894 x 0.082 x 273.0 / 1 = 4.24 Liters.
Explanation: