The molar mass of the unknown compound is calculated as follows
let the unknown gas be represented by letter Y
Rate of C2F4/ rate of Y = sqrt of molar mass of gas Y/ molar mass of C2F4
= (4.6 x10^-6/ 5.8 x10^-6) = sqrt of Y/ 100
remove the square root sign by squaring in both side
(4.6 x 10^-6 / 5.8 x10^-6)^2 = Y/100
= 0.629 =Y/100
multiply both side by 100
Y= 62.9 is the molar mass of unknown gas
Answer:
a base is something that reacts with an acid to form water and salt , an alkai is any base that is soluble in water
<u>Answer:</u> The mass of sodium chloride solution present is 0.256 grams.
<u>Explanation:</u>
We are given:
39.0 % of sodium in sodium chloride solution
This means that 39.0 grams of sodium is present in 100 grams of sodium chloride solution
Mass of sodium given = 100 mg = 0.1 g (Conversion factor: 1 g = 1000 mg)
Applying unitary method:
If 39 grams of sodium metal is present in 100 grams of sodium chloride solution
So, if 0.1 grams of sodium metal will be present in =
of sodium chloride solution.
Hence, the mass of sodium chloride solution present is 0.256 grams.
Answer:
Silver Acetate would be the Limiting Reagent.
Explanation:
The balance chemical equation for the given double displacement reaction is as;
HCl + AgC₂H₃O₂ → AgCl + HC₂H₃O₂
Step 1: <u>Calculate Moles of Starting Materials:</u>
Moles of HCl:
Moles = Mass / M.Mass
Moles = 72.9 g / 36.46
Moles = 1.99 moles
Moles of AgC₂H₃O₂:
Moles = 150 g / 166.91 g/mol
Moles = 0.898 moles
Step 2: <u>Find out Limiting reagent as:</u>
According to balance chemical equation.
1 mole of HCl reacts with = 1 mole of AgC₂H₃O₂
So,
1.99 moles of HCl will react with = X moles of AgC₂H₃O₂
Solving for X,
X = 1.99 mol × 1 mol / 1 mol
X = 1.99 mol of AgC₂H₃O₂
Hence, to completely consume 1.99 moles of Hydrochloric acid we will require 1.99 moles of Silver Acetate, But, we are provided with only 0.898 moles of Silver Acetate. This means Silver Acetate will consume first in the reaction therefore, it is the LIMITING REAGENT.