1) Inversely
2) increases
3) Boyle's
4) mass
5) Kelvin
6) Charles's
7) Gay-Lussac's
8) directly
9) combined
10) the amount
<span>The pressure and volume of a fixed mass of gas are inversely related. If one decreases, the other increases. This relationship is known as Boyle's law. The volume of a fixed mass of a gas is directly proportional to its kelvin temperature. This relationship is known as Charles's law. Gay-Lussac's law states that the pressure of a gas is directly proportional to the kelvin temperature if the volume remains constant. These three separate gas laws can be written as a single expression called the combined gas law. It can be used in situations in which only the amount of gas is constant. </span>
Answer:
0.2 m/s
Explanation:
given,
mass of astronaut, M = 85 Kg
mass of hammer, m = 1 Kg
velocity of hammer , v =17 m/s
speed of astronaut, v' = ?
initial speed of the astronaut and the hammer be equal to zero = ?
Using conservation of momentum
(M + m) V = M v' + m v
(M + m) x 0 = 85 x v' + 1 x 17
85 v' = -17
v' = -0.2 m/s
negative sign represent the astronaut is moving in opposite direction of hammer.
Hence, the speed of the astronaut is equal to 0.2 m/s
<span>This problem is relatively simple, in order to solve this problem the only formula you need to know is the formula for friction, which is:
Ff = UsN
where Us is the coefficient of static friction and N is the normal force.
In order to get the crate moving you must first apply enough force to overcome the static friction:
Fapplied = Ff
Since Fapplied = 43 Newtons:
Fapplied = Ff = 43 = UsN
and it was given that Us = 0.11, so all you have to do is isolate N by dividing both sides by 0.11
43/0.11 = N = 390.9 which is approximately 391 or C. 3.9x10^2</span>
<h2>
Average speed of transit train is 60 mph</h2>
Explanation:
Average speed of passenger train = 45 mph
Time taken from station A to station B for passenger train = 10:00 - 6:00 = 4 hours
Distance between station A to station B = 45 x 4 = 180 miles.
Time taken from station A to station B for transit train = 4 - 1 = 3 hours
Distance between station A to station B = Average speed of transit train x Time taken from station A to station B for transit train
180 = Average speed of transit train x 3
Average speed of transit train = 60 mph
Average speed of transit train is 60 mph
Answer:
Check the explanation
Explanation:
The beat frequency is
df = f2 - f1
the wavelength is
lamda1 = (v/f1)
and lamda2 = (v/f2)
where v = 340 m/s,f1 = 25.0 kHz and f2 = 20.0 kHz