Answer:
Explanation:
The result will be affected.
The mass of KHP weighed out was used to calculate the moles of KHP weighed out (moles = mass/molar mass).
Not all the sample is actually KHP if the KHP is a little moist, so when mass was used to determine the moles of KHP, a higher number of moles than what is actually present would be obtained (because some of that mass was not KHP but it was assumed to be so. Therefore, there is actually a less present number of moles than the certain number that was thought of.
During the titration, NaOH reacts in a 1:1 ratio with KHP. So it was determined that there was the same number of moles of NaOH was the volume used as there were KHP in the mass that was weighed out. Since there was an overestimation in the moles of KHP, then there also would be an overestimation in the number of moles of NaOH.
Thus, NaOH will appear at a higher concentration than it actually is.
Answer:

Explanation:
Anything oxide is a compound with oxygen, and since oxygen is -2, it requires two of the metal's +1 to make it zero
In other words:
2(+1) + (-1) = 0
The correct answer based on the given question above would be the first option. <span>When a perfume bottle is opened, some liquid changes to gas and the fragrance spreads around the room because gases do not have a definite volume. Hope this answer helps.</span>
First, you would add the products: 0.4 + 6.01 = 6.41 g
Then, to get the mass of Iron required, you would do 6.41 - 5.0 = 1.41
This is because in the conservation of mass principle it states,
mass of reactants = mass of products.