Answer:
(a) 1s² 2s² 2p⁶ 3s² 3p⁴
(b) 1s² 2s² 2p⁶ 3s² 3p⁵
(c) sp³
(d) No valence orbital remains unhybridized.
Explanation:
<em>Consider the SCl₂ molecule. </em>
<em>(a) What is the electron configuration of an isolated S atom? </em>
S has 16 electrons. Its electron configuration is 1s² 2s² 2p⁶ 3s² 3p⁴.
<em>(b) What is the electron configuration of an isolated Cl atom? </em>
Cl has 17 electrons. Its electron configuration is 1s² 2s² 2p⁶ 3s² 3p⁵.
<em>(c) What hybrid orbitals should be constructed on the S atom to make the S-Cl bonds in SCl₂? </em>
SCl₂ has a tetrahedral electronic geometry. Therefore, the orbital 3s hybridizes with the 3 orbitals 3 p to form 4 hybrid orbital sp³.
<em>(d) What valence orbitals, if any, remain unhybridized on the S atom in SCl₂?</em>
No valence orbital remains unhybridized.
It increases across a period and decreases down a group. A good way to remember this is that fluorine is the most electronegative atom, and it's to the top right of the table.
Answer:
True
Explanation:
The desert refers to a region of arid land which is characterized by extreme temperatures, extreme dryness, low amount of precipitation and generally harsh living conditions. Because of these harsh conditions, they have been tagged with various names ranging from 'Death Valley' to 'the place from where there is no return' etc.
Every desert is made up of 2 components: the <u>biotic (living) component</u> and the <u>abiotic (non-living) component</u>. The biotic (living) component consists of the plants and animals that have adapted to these harsh living conditions e.g. Cactus or Cacti, Holly plants, Camels, Lizards, Snakes etc. The abiotic (non-living) component consists of climate (subtropical deserts which are extremely cold or temperate deserts which are extremely hot), location, precipitation/rainfall
Answer: 24.1 L
Explanation:
To calculate the final temperature of the system, we use the equation given by Charles' Law. This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial volume and temperature of the gas.
are the final volume and temperature of the gas.
We are given:

Putting values in above equation, we get:

Thus the volume of the sample when heated to 220.0oC and the pressure is constant is 24.1 L
Trueeeeeeeeeeeeeeeee!!!!!