The thing you MUST do FIRST is look for any H's, O's, or F's in the equation
1)any element just by itself not in a compound, their oxidation number is 0
ex: H2's oxidation number is 0
ex: Ag: oxidation number is 0 if its just something like Ag + BLA = LALA
2) the oxidation number of H is always +1, unless its just by itself (see #1)
3) the oxidation number of O is always -2, unless its just by itself (see #1)
4) the oxidation number of F is always -1, unless its just by itself (see#1)
ok so after you have written those oxidation numbers in rules 1-4 over each H, F, or O atom in the compound, you can look at the elements that we havent talked about yet
for example::::
N2O4
the oxidation number of O is -2.
since there are 4 O's, the charge is -8. now remember that N2O4 has to be neutral so the N2 must have a charge of +8
+8 divided by 2 = +4
N has an oxidation number of +4.
more rules:
5) the sum of oxidation numbers in a compound add up to 0 (when multiplied by the subscripts!!!) (see above example)
6) the sum of oxidation numbers in a polyatomic ion is the charge (for example, PO4 has a charge of (-3) so
oxidation # of O = -2. (there are 4 O's = -8 charge on that side ) P must have an oxidation number of 5. (-8+5= -3), and -3 is the total charge of the polyatomic ion
The pressure that will be exerted if four sample of gas are placed in a single 3.5 container is calculated as below
if each gas occupies 675 mmhg
what about 4 gases in the sample
by cross multiplication
= 675 mm hg x 4/1 = 2.7 x10^3mmhg (answer D)
Answer:
0.693 (you can round it up if you want to)
Explanation:
Density= mass ÷ volume
54.2 ÷ 78.1 = 0.693
I hope this helped☺
Diagram of the nuclear composition, electron configuration, chemical data, and valence orbitals of an atom of neodymium-144 (atomic number: 60), an isotope of this element. The nucleus consists of 60 protons (red) and 84 neutrons (orange). 60 electrons (white) successively occupy available electron shells (rings).
Answer:
![[H^+]=0.00332M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.00332M)
Explanation:
Hello,
In this case, considering the dissociation of valeric acid as:

Its corresponding law of mass action is:
![Ka=\frac{[H^+][C_5H_9O_2^-]}{[HC_5H_9O_2]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH%5E%2B%5D%5BC_5H_9O_2%5E-%5D%7D%7B%5BHC_5H_9O_2%5D%7D)
Now, by means of the change
due to dissociation, it becomes:

Solving for
we obtain:

Thus, since the concentration of hydronium equals
, the answer is:
![[H^+]=x=0.00332M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dx%3D0.00332M)
Best regards.