Answer: 292.54g of Ag
Explanation:
Cu + 2AgNO3 →Cu(NO3)2 + 2 Ag
mass conc. Of Ag = n x molar Mass
Mass conc. Of Ag = 2 x 108 = 216g
From the equation,
63.5g of Cu produced 216g of Ag
Therefore, 86g of Cu will produce Xg of Ag. i.e
Xg of Ag = (86 x 216)/63.5 = 292.54g
<span>0.38
You first calculate the total moles by dividing the grams by molecular weight:
45 g N2 / 28.02 g/mol = 1.6 mol N2
40 g Ar / 39.95 g/mol = 1.0 mol
Then you divide the moles of Ar by the total number of moles:
1.0 / (1.6 + 1.0) = 0.38 mol fraction</span>
a. 35.8 KJ
b. 871 g
c. Fe
..........................................................................................
1.64 L of sulfur dioxide (SO₂)
Explanation:
We have the following chemical reaction:
S (s) + O₂ (g) → SO₂ (g)
First we calculate the number of moles of sulfur (S):
number of moles = mass / molar weight
number of moles of sulfur = 2.35 / 32 = 0.0734 moles
Looking at the chemical reaction we see that 1 moles of sulfur (S) produces 1 moles of sulfur dioxide (SO₂), so 0.0734 moles of sulfur will produce 0.0734 moles of sulfur dioxide (SO₂).
To calculate the volume of sulfur dioxide (SO₂), assuming that the sulfur dioxide is behaving as an ideal gas and the we determine the gas volume under standard temperature and pressure conditions, we use the following formula:
number of moles = volume / 22.4 (L/mole)
volume = number of moles × 22.4
volume of SO₂ = 0.0734 × 22.4 = 1.64 L
Learn more about:
molar volume
brainly.com/question/11160940
brainly.com/question/506048
#learnwithBrainly
PS: I appreciate that you took the time and effort to write the chemical equation in a readable way. This makes the question to be very rare :D
Answer:
The particles must be in the correct orientation upon impact.
The particles must collide with enough energy to meet the activation energy of the reaction.
Explanation:
This a problem related to chemical kinetics. The collision theory is one of the theories of reaction rates and it perfectly explains how the effectiveness of colliding molecules dictates the pace of a reaction.
For reactions to occur, there must be collisions between reacting particles. It implies that the collision per unit time and how successful collisions are determines the rate of chemical reactions in most cases. Therefore, for a collision to be successful, colliding particle must have enough energy which is greater than the activation energy of the reaction. In order to also produce the desired products, the colliding particles must be properly oriented.