1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mote1985 [20]
3 years ago
15

What are three key aerodynamics principles?

Physics
1 answer:
mafiozo [28]3 years ago
8 0

Answer:

A

Explanation:

There are three basic forces in aerodynamics: acceleration, which moves an airplane forward; drag, which holds it back; and height, which keeps it airborne. Lift is generally explained by three theories: Bernoulli's principle, the Coanda effect, and Newton's third law of motion.

You might be interested in
Why does a balloon stick to a wall questions and problems answers?
Akimi4 [234]
<span>The reason that the balloon will stick to the wall is because the negative charges in the balloon will make the electrons in the wall move to the other side of their atoms and this leaves the surface of the wall positively charged.</span>
7 0
3 years ago
A 12000 kg boat is moving 4.25 m/s. Its engine pushes 9200 N forward, but the current pushes back at 12,500 N. How much times do
Verizon [17]

Answer:

15.5 seconds

Explanation:

Apply Newton's second law:

∑F = ma

-12500 + 9200 = (12000) a

a = -0.275 m/s²

v = at + v₀

0 = (-0.275) t + 4.25

t = 15.5 s

It takes the boat 15.5 seconds to stop.

7 0
3 years ago
An electron and a proton are held on an x axis, with the electron at x = + 1.000 m and the proton at x = - 1.000 m. Part A How m
r-ruslan [8.4K]

PART A)

Electrostatic potential at the position of origin is given by

V = \frac{kq_1}{r_1} + \frac{kq_2}{r_2}

here we have

q_1 = 1.6 \times 10^{-19} C

q_2 = -1.6 \times 10^{-19} C

r_1 = r_2 = 1 m

now we have

V = \frac{Ke}{r} - \frac{Ke}{r}

V = 0

Now work done to move another charge from infinite to origin is given by

W = q(V_f - V_i)

here we will have

W = e(0 - 0) = 0

so there is no work required to move an electron from infinite to origin

PART B)

Initial potential energy of electron

U = \frac{Kq_1e}{r_1} + \frac{kq_2e}{r_2}

U = \frac{9\times 10^9(-1.6\times 10^{-19}(-1.6 \times 10^{-19})}{19} + \frac{9\times 10^9(1.6\times 10^{-19}(-1.6 \times 10^{-19})}{21}

U = (2.3\times 10^{-28})(\frac{1}{19} - \frac{1}{21})

U = 1.15\times 10^{-30}

Now we know

KE = \frac{1}{2}mv^2

KE = \frac{1}{2}(9.1\times 10^{-31}(100)^2

KE = 4.55 \times 10^{-27} kg

now by energy conservation we will have

So here initial total energy is sufficient high to reach the origin

PART C)

It will reach the origin

4 0
3 years ago
Light is incident on the left face of an isosceles prism; with an apex angle of 49o, such that the light exiting the right face
Sunny_sXe [5.5K]

Answer:

\mu = 1.645

Explanation:

By Snell's law we know at the left surface

\theta_i = 19^o

\theta_r = ?

\mu_1 = 1

\mu_2 = \mu

now we have

1 sin19 = \mu sin\theta_r

0.33 = \mu sin\theta_r

now on the other surface we know that

angle of incidence = \theta_r'

\theta_e = 90

so again we have

\mu sin\theta_r' = 1 sin90

so we have

\theta_r = sin^{-1}\frac{0.33}{\mu}

\theta_r' = sin^{-1}\frac{1}{\mu}

also we know that

\theta_r + \theta_r' = 49

sin^{-1}\frac{0.33}{\mu} + sin^{-1}\frac{1}{\mu} = 49

By solving above equation we have

\mu = 1.645

3 0
3 years ago
Read 2 more answers
Steam enters a counterflow heat exchanger operating at steady state at 0.07 MPa with a specific enthalpy of 2431.6 kJ/kg and exi
PIT_PIT [208]

Answer:

Explanation:

Given:

Steam Mass rate, ms = 1.5 kg/min

= 1.5 kg/min × 1 min/60 sec

= 0.025 kg/s

Air Mass rate, ma = 100 kg/min

= 100 kg/min × 1 min/60 sec

= 1.67 kg/s

A.

Extracting the specific enthalpy and temperature values from property table of “Saturated water – Pressure table” which corresponds to temperature at 0.07 MPa.

xf, quality = 0.9.

Tsat = 89.9°C

hf = 376.57 kJ/kg

hfg = 2283.38 kJ/kg

Using the equation for specific enthalpy,

hi = hf + (hfg × xf)

= 376.57 + (2283.38 × 0.9)

= 2431.552 kJ/kg

The specific enthalpy of the outlet, h2 = hf

= 376.57 kJ/kg

B.

Rate of enthalpy (heat exchange), Q = mass rate, ms × change in specific enthalpy

= ms × (hi - h2)

= 0.025 × (2431.552 - 376.57)

= 0.025 × 2055.042

= 51.37455 kW

= 51.38 kW.

5 0
3 years ago
Other questions:
  • PLEASE HELP ASAP!! WILL GIVE BRAINLIEST
    11·1 answer
  • After brainstorming, engineers may refine their ideas by making what???
    12·1 answer
  • If different groups of scientist have access to the same data, how can they draw different conclusions?
    5·1 answer
  • HELP PLEASE!<br> write the equation for calculating relative velocity in one dimensional.
    15·1 answer
  • What does it mean if a paint sample "matches" a known sample from a vehicle? Does this indicate the same source? Why or why not?
    11·1 answer
  • Riddle of the day<br><br> What gets wet while drying?
    11·2 answers
  • Would someone just answer this now?
    9·1 answer
  • A student in your class whom you kind-of like asks you come to watch a meteor shower. What exactly are you being invited to? a.
    8·1 answer
  • If the distance between two objects is tripled, what happens
    5·1 answer
  • A bicyclist covers the first leg of a journey that is d1meters in t1seconds at a speed of v1m/s and the second leg of d2meters i
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!