The magnitude of the downward acceleration of the hollow cylinder is 6m/s^2.
Z = I α
T.R =1/2 M (
+
)α
T.R = 1/2M 5
/4 α
T = 5Ma/8
Mg - T = Ma
Mg - 5Ma/8 = Ma
Mg= 5Ma/8 + Ma = 13Ma / 8
acceleration = 8g/13 = 6 m/s^2
The rate at which an object's velocity with respect to time changes is called its acceleration. The direction of the net force imposed on an item determines its acceleration in relation to that force. According to Newton's Second Law, the magnitude of an object's acceleration is the result of two factors working together
The size of the net balance of all external forces acting on that item is directly proportional to the magnitude of this net resultant force; the magnitude of that object's mass, depending on the materials from which it is built, is inversely related to its mass.
Learn more about acceleration here:
brainly.com/question/2303856
#SPJ4
The rank of the capacitors in order of the energy they store is E>A>B>D>C.
<h3>
What is capacitor?</h3>
In an electric field, a capacitor is a device that stores electrical energy. It has two terminals and is a passive electrical component.
Capacitance refers to a capacitor's effect. While there is some capacitance between any two nearby electrical wires in a circuit, a capacitor is a component made to increase capacitance. The term "condenser" or "condensator" originally applied to the capacitor. Condenser microphones, sometimes known as capacitor microphones, are a remarkable exception to the general lack of usage of this name and its cognates in English.
Practical capacitors come in a wide variety of physical shapes and constructions, and there are numerous varieties that are used often.
To learn more about capacitor,visit:
brainly.com/question/17176550
#SPJ4
Answer:
The back end of the vessel will pass the pier at 4.83 m/s
Explanation:
This is purely a kinetics question (assuming we're ignoring drag and other forces) so the weight of the boat doesn't matter. We're given:
Δd = 315.5 m
vi = 2.10 m/s
a = 0.03 m/s^2
vf = ?
The kinetics equation that incorporates all these variables is:
vf^2 = vi^2 + 2aΔd
vf = √(2.1^2 + 2(0.03)(315.5))
vf = 4.83 m/s
The answer to the question being asked on what do you called when the movement of the bones around a fixed angle without lateral displacement is ROTATION. Rotation movement allows the bone to move in a single long axis without being displaced.