A point charge is located at the origin of a coordinate system. A positive charge is brought in from infinity to a point. The charges are at distance for given electrical potential energy is 3.34 x 10⁷ m.
<h3>What is electric potential energy?</h3>
The electric potential energy is the work done by a test charge to bring it from infinity to a particular location.
The electric potential energy is given by the relation,
V = kQ/r
where k = 9 x 10⁹ J.m/C ,Q = 3 x 10⁻⁹ C, V =8.09 × 10⁻⁷ J.
Substitute the values into the expression to get the distance between the charges.
8.09 × 10⁻⁷ = 9 x 10⁹ x 3 x 10⁻⁹ / r
r =3.34 x 10⁷ m
Thus, the distance between the charges will be 3.34 x 10⁷ m.
Learn more about electric potential energy.
brainly.com/question/12645463
#SPJ1
Answer:
Beta radiation
Explanation:
Beta radiation is a radioactive phenomenon of nuclear decay in which an unstable atom or isotop, by transforming a neutron into a proton, or by transforming a proton into a neutron, becomes stable. For example, the decay of carbon 14 produces beta radiation.
Answer:
<em>The new period of oscillation is D) 3.0 T</em>
Explanation:
<u>Simple Pendulum</u>
A simple pendulum is a mechanical arrangement that describes periodic motion. The simple pendulum is made of a small bob of mass 'm' suspended by a thin inextensible string.
The period of a simple pendulum is given by

Where L is its length and g is the local acceleration of gravity.
If the length of the pendulum was increased to 9 times (L'=9L), the new period of oscillation will be:


Taking out the square root of 9 (3):

Substituting the original T:

The new period of oscillation is D) 3.0 T
Answer:
0.74 m/s
Explanation:
From the question,
We apply the law of conservation of momentum,
Total momentum before collision = Total momentum after collision.
Since the skateboard, the person and the brick where stationary, therefore, the total momentum before collision is 0
0 = Total momentum after collision
(m+M)V + m'v = 0
Where m = mass of the skateboard, M = mass of the person, m' = mass of the brick, V = recoil velocity of the person and the skateboard, v = velocity of the brick
make V the subject of the equation above
V = -m'v/(m+M)................... Equation 1
Given: m = 4.10 kg, M = 68.0 kg, m' = 2.50 kg, v = 21.0 m/s.
Substitute these values into equation 1
V = -(2.5×21)/(68+2.5)
V = 52.50/70.5
V = 0.74 m/s
C^2=a^2+b^2
c^2=45^2+45^2
c^2=4050
c=63.64
c=64
The answer is D.